Risk Factors for Pediatric Sepsis in the Emergency Department

医学 败血症 急诊科 回顾性队列研究 逻辑回归 急诊医学 诊断代码 随机森林 生命体征 儿科 机器学习 内科学 外科 人口 精神科 环境卫生 计算机科学
作者
Laura Mercurio,Sovijja Pou,Susan Duffy,Carsten Eickhoff
出处
期刊:Pediatric emergency care [Lippincott Williams & Wilkins]
卷期号:39 (2): e48-e56 被引量:7
标识
DOI:10.1097/pec.0000000000002893
摘要

Objective To identify underappreciated sepsis risk factors among children presenting to a pediatric emergency department (ED). Methods A retrospective observational study (2017–2019) of children aged 18 years and younger presenting to a pediatric ED at a tertiary care children's hospital with fever, hypotension, or an infectious disease International Classification of Diseases (ICD)-10 diagnosis. Structured patient data including demographics, problem list, and vital signs were extracted for 35,074 qualifying ED encounters. According to the Improving Pediatric Sepsis Outcomes Classification, confirmed by expert review, 191 patients met clinical sepsis criteria. Five machine learning models were trained to predict sepsis/nonsepsis outcomes. Top features enabling model performance (N = 20) were then extracted to identify patient risk factors. Results Machine learning methods reached a performance of up to 93% sensitivity and 84% specificity in identifying patients who received a hospital diagnosis of sepsis. A random forest classifier performed the best, followed by a classification and regression tree. Maximum documented heart rate was the top feature in these models, with importance coefficients (ICs) of 0.09 and 0.21, which represent how much an individual feature contributes to the model. Maximum mean arterial pressure was the second most important feature (IC 0.05, 0.13). Immunization status (IC 0.02), age (IC 0.03), and patient zip code (IC 0.02) were also among the top features enabling models to predict sepsis from ED visit data. Stratified analysis revealed changes in the predictive importance of risk factors by race, ethnicity, oncologic history, and insurance status. Conclusions Machine learning models trained to identify pediatric sepsis using ED clinical and sociodemographic variables confirmed well-established predictors, including heart rate and mean arterial pressure, and identified underappreciated relationships between sepsis and patient age, immunization status, and demographics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
susu完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
xu完成签到,获得积分10
1秒前
2秒前
墩墩焘完成签到,获得积分10
2秒前
生动的不尤完成签到,获得积分10
2秒前
SciGPT应助weiwei采纳,获得10
2秒前
3秒前
希望天下0贩的0应助TY采纳,获得10
3秒前
爆米花应助信号灯采纳,获得10
3秒前
YYJJHH发布了新的文献求助10
4秒前
4秒前
健壮的半青完成签到 ,获得积分10
4秒前
PP应助13击采纳,获得10
6秒前
6秒前
chen发布了新的文献求助10
6秒前
hetao286发布了新的文献求助20
6秒前
12完成签到 ,获得积分10
6秒前
高屋建瓴完成签到,获得积分10
6秒前
焱阳发布了新的文献求助10
6秒前
6秒前
6秒前
jie酱拌面应助xzn1123采纳,获得10
7秒前
shao完成签到,获得积分10
7秒前
zyx发布了新的文献求助10
7秒前
负责的蜡烛完成签到,获得积分10
7秒前
7秒前
乐乐应助橙子采纳,获得10
7秒前
8秒前
岚岚完成签到,获得积分10
8秒前
orixero应助王哪跑12采纳,获得10
8秒前
黄万齐发布了新的文献求助10
9秒前
11秒前
小王同学完成签到,获得积分10
11秒前
11秒前
焱阳完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573107
求助须知:如何正确求助?哪些是违规求助? 3993602
关于积分的说明 12363019
捐赠科研通 3666834
什么是DOI,文献DOI怎么找? 2020933
邀请新用户注册赠送积分活动 1055090
科研通“疑难数据库(出版商)”最低求助积分说明 942509