Risk Factors for Pediatric Sepsis in the Emergency Department

医学 败血症 急诊科 回顾性队列研究 逻辑回归 急诊医学 诊断代码 随机森林 生命体征 儿科 机器学习 内科学 外科 人口 精神科 环境卫生 计算机科学
作者
Laura Mercurio,Sovijja Pou,Susan Duffy,Carsten Eickhoff
出处
期刊:Pediatric emergency care [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (2): e48-e56 被引量:1
标识
DOI:10.1097/pec.0000000000002893
摘要

Objective To identify underappreciated sepsis risk factors among children presenting to a pediatric emergency department (ED). Methods A retrospective observational study (2017–2019) of children aged 18 years and younger presenting to a pediatric ED at a tertiary care children's hospital with fever, hypotension, or an infectious disease International Classification of Diseases (ICD)-10 diagnosis. Structured patient data including demographics, problem list, and vital signs were extracted for 35,074 qualifying ED encounters. According to the Improving Pediatric Sepsis Outcomes Classification, confirmed by expert review, 191 patients met clinical sepsis criteria. Five machine learning models were trained to predict sepsis/nonsepsis outcomes. Top features enabling model performance (N = 20) were then extracted to identify patient risk factors. Results Machine learning methods reached a performance of up to 93% sensitivity and 84% specificity in identifying patients who received a hospital diagnosis of sepsis. A random forest classifier performed the best, followed by a classification and regression tree. Maximum documented heart rate was the top feature in these models, with importance coefficients (ICs) of 0.09 and 0.21, which represent how much an individual feature contributes to the model. Maximum mean arterial pressure was the second most important feature (IC 0.05, 0.13). Immunization status (IC 0.02), age (IC 0.03), and patient zip code (IC 0.02) were also among the top features enabling models to predict sepsis from ED visit data. Stratified analysis revealed changes in the predictive importance of risk factors by race, ethnicity, oncologic history, and insurance status. Conclusions Machine learning models trained to identify pediatric sepsis using ED clinical and sociodemographic variables confirmed well-established predictors, including heart rate and mean arterial pressure, and identified underappreciated relationships between sepsis and patient age, immunization status, and demographics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫愁完成签到,获得积分20
刚刚
Accepted完成签到,获得积分10
1秒前
善学以致用应助sxm1004采纳,获得10
1秒前
wu完成签到,获得积分10
1秒前
上帝发誓完成签到,获得积分10
1秒前
1秒前
SciGPT应助haha采纳,获得10
2秒前
无聊倩发布了新的文献求助10
2秒前
sui完成签到,获得积分10
2秒前
2秒前
ZHANGZHANG发布了新的文献求助10
2秒前
许诺完成签到,获得积分10
4秒前
李常轩发布了新的文献求助10
4秒前
lseyj完成签到,获得积分10
4秒前
5秒前
端庄的小蝴蝶完成签到,获得积分10
6秒前
6秒前
快乐滑板应助妮妮采纳,获得10
7秒前
谨言完成签到 ,获得积分10
7秒前
7秒前
害羞的妙海完成签到 ,获得积分10
7秒前
8秒前
骆驼林子完成签到,获得积分10
8秒前
drleslie完成签到 ,获得积分10
8秒前
小吃货完成签到,获得积分10
9秒前
文献欧尼完成签到 ,获得积分20
9秒前
10秒前
zbclzf完成签到,获得积分10
10秒前
Grinder发布了新的文献求助10
11秒前
Master完成签到 ,获得积分10
11秒前
还没想好完成签到,获得积分10
11秒前
任晴发布了新的文献求助10
12秒前
lhy12345完成签到,获得积分10
13秒前
韩邹光完成签到,获得积分10
13秒前
勇敢虎虎完成签到,获得积分10
13秒前
1234完成签到,获得积分10
13秒前
专注的书包完成签到,获得积分10
14秒前
精明的飞槐完成签到 ,获得积分10
15秒前
15秒前
娜娜完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450648
求助须知:如何正确求助?哪些是违规求助? 3046162
关于积分的说明 9005205
捐赠科研通 2734898
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693387
邀请新用户注册赠送积分活动 691589