已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Risk Factors for Pediatric Sepsis in the Emergency Department

医学 败血症 急诊科 回顾性队列研究 逻辑回归 急诊医学 诊断代码 随机森林 生命体征 儿科 机器学习 内科学 外科 人口 精神科 环境卫生 计算机科学
作者
Laura Mercurio,Sovijja Pou,Susan Duffy,Carsten Eickhoff
出处
期刊:Pediatric emergency care [Lippincott Williams & Wilkins]
卷期号:39 (2): e48-e56 被引量:1
标识
DOI:10.1097/pec.0000000000002893
摘要

Objective To identify underappreciated sepsis risk factors among children presenting to a pediatric emergency department (ED). Methods A retrospective observational study (2017–2019) of children aged 18 years and younger presenting to a pediatric ED at a tertiary care children's hospital with fever, hypotension, or an infectious disease International Classification of Diseases (ICD)-10 diagnosis. Structured patient data including demographics, problem list, and vital signs were extracted for 35,074 qualifying ED encounters. According to the Improving Pediatric Sepsis Outcomes Classification, confirmed by expert review, 191 patients met clinical sepsis criteria. Five machine learning models were trained to predict sepsis/nonsepsis outcomes. Top features enabling model performance (N = 20) were then extracted to identify patient risk factors. Results Machine learning methods reached a performance of up to 93% sensitivity and 84% specificity in identifying patients who received a hospital diagnosis of sepsis. A random forest classifier performed the best, followed by a classification and regression tree. Maximum documented heart rate was the top feature in these models, with importance coefficients (ICs) of 0.09 and 0.21, which represent how much an individual feature contributes to the model. Maximum mean arterial pressure was the second most important feature (IC 0.05, 0.13). Immunization status (IC 0.02), age (IC 0.03), and patient zip code (IC 0.02) were also among the top features enabling models to predict sepsis from ED visit data. Stratified analysis revealed changes in the predictive importance of risk factors by race, ethnicity, oncologic history, and insurance status. Conclusions Machine learning models trained to identify pediatric sepsis using ED clinical and sociodemographic variables confirmed well-established predictors, including heart rate and mean arterial pressure, and identified underappreciated relationships between sepsis and patient age, immunization status, and demographics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
簌落完成签到,获得积分10
1秒前
2秒前
wcx发布了新的文献求助10
4秒前
王子完成签到,获得积分10
4秒前
purplelove发布了新的文献求助10
5秒前
5秒前
stevenliu67完成签到,获得积分10
8秒前
Flanker发布了新的文献求助10
10秒前
11秒前
zyy_cwdl发布了新的文献求助30
11秒前
11秒前
14秒前
14秒前
顺心tt完成签到,获得积分10
14秒前
zzd发布了新的文献求助10
14秒前
Lucas应助冷静苗条采纳,获得10
14秒前
大模型应助春风采纳,获得10
15秒前
16秒前
祁尒发布了新的文献求助10
17秒前
17秒前
WTX发布了新的文献求助30
18秒前
深情安青应助尤川采纳,获得10
18秒前
谨慎的雨梅完成签到,获得积分10
19秒前
19秒前
思源应助ssx采纳,获得10
20秒前
现代雁桃完成签到,获得积分20
20秒前
Ran666778完成签到,获得积分10
21秒前
22秒前
bkagyin应助既然采纳,获得10
25秒前
25秒前
隐形的颦发布了新的文献求助10
26秒前
斯文败类应助小泡泡采纳,获得10
28秒前
火星上的小蚂蚁完成签到,获得积分10
28秒前
29秒前
30秒前
小二郎应助omoily采纳,获得10
30秒前
失眠的血茗完成签到,获得积分10
32秒前
liang发布了新的文献求助10
32秒前
33秒前
鹑尾完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172