Predictive and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication

计算机科学 编码(社会科学) 频道(广播) 图像压缩 无线 前向纠错 计算机工程 图像质量 解码方法 人工智能 实时计算 算法 计算机网络 图像处理 电信 图像(数学) 数学 统计
作者
Wenyu Zhang,Haijun Zhang,Hui Ma,Hua Shao,Ning Wang,Victor C. M. Leung
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 5486-5501 被引量:36
标识
DOI:10.1109/twc.2023.3234408
摘要

Semantic communication is a newly emerged communication paradigm that exploits deep learning (DL) models to realize communication processes like source coding and channel coding. Recent advances have demonstrated that DL-based joint source-channel coding (DeepJSCC) can achieve exciting data compression and noise-resiliency performances for wireless image transmission tasks, especially in environments with low channel signal-to-noises (SNRs). However, existing DeepJSCC-based semantic communication frameworks still cannot achieve adaptive code rates for different channel SNRs and image contents, which reduces its flexibility and bandwidth efficiency. In this paper, we propose a predictive and adaptive deep coding (PADC) framework for realizing flexible code rate optimization with a given target transmission quality requirement. PADC is realized by a variable code length enabled DeepJSCC (DeepJSCC-V) model for realizing flexible code length adjustment, an Oracle Network (OraNet) model for predicting peak-signal-to-noise (PSNR) value for an image transmission task according to its contents, channel signal to noise ratio (SNR) and the compression ratio (CR) value, and a CR optimizer aims at finding the minimal data-level or instance-level CR with a PSNR quality constraint. By using the above three modules, PADC can transmit the image data with minimal CR, which greatly increases bandwidth efficiency. Simulation results demonstrate that the proposed DeepJSCC-V model can achieve similar PSNR performances compared with the state-of-the-art Attention-based DeepJSCC (ADJSCC) model, and the proposed OraNet model is able to predict high-quality PSNR values with an average error lower than 0.5dB. Results also demonstrate that the proposed PADC can use nearly minimal bandwidth consumption for wireless image transmission tasks with different channel SNR and image contents, at the same time guaranteeing the PSNR constraint for each image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Karry完成签到,获得积分20
刚刚
清清发布了新的文献求助10
1秒前
1秒前
1秒前
王运静发布了新的文献求助10
1秒前
xun发布了新的文献求助60
1秒前
wanci应助容荣采纳,获得10
1秒前
酷炫的荧发布了新的文献求助10
2秒前
科研通AI2S应助淡定采纳,获得10
2秒前
3秒前
Matthew_G完成签到,获得积分10
3秒前
3秒前
独孤幻月96应助小羊咩咩采纳,获得10
4秒前
4秒前
鱼囧完成签到,获得积分10
4秒前
牂牂发布了新的文献求助10
5秒前
舒屿望迷完成签到,获得积分10
5秒前
123131完成签到,获得积分10
6秒前
慕青应助求学狗采纳,获得10
6秒前
6秒前
rain完成签到,获得积分20
6秒前
chen完成签到,获得积分10
6秒前
7秒前
走走发布了新的文献求助10
7秒前
Lylin发布了新的文献求助10
7秒前
7秒前
菠萝完成签到,获得积分10
8秒前
甘蔗侠发布了新的文献求助10
8秒前
OKADM发布了新的文献求助10
8秒前
烟花应助Karry采纳,获得10
8秒前
milkmore发布了新的文献求助10
8秒前
科研通AI6应助清清采纳,获得10
9秒前
静默发布了新的文献求助20
9秒前
9秒前
9秒前
从心完成签到,获得积分10
10秒前
niceday123完成签到 ,获得积分10
10秒前
烟花应助无辜的可愁采纳,获得10
10秒前
科研通AI6应助研友_nV2pkn采纳,获得10
10秒前
CodeCraft应助nqq采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371