Predictive and Adaptive Deep Coding for Wireless Image Transmission in Semantic Communication

计算机科学 编码(社会科学) 频道(广播) 图像压缩 无线 前向纠错 计算机工程 图像质量 解码方法 人工智能 实时计算 算法 计算机网络 图像处理 电信 图像(数学) 数学 统计
作者
Wenyu Zhang,Haijun Zhang,Hui Ma,Hua Shao,Ning Wang,Victor C. M. Leung
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:22 (8): 5486-5501 被引量:36
标识
DOI:10.1109/twc.2023.3234408
摘要

Semantic communication is a newly emerged communication paradigm that exploits deep learning (DL) models to realize communication processes like source coding and channel coding. Recent advances have demonstrated that DL-based joint source-channel coding (DeepJSCC) can achieve exciting data compression and noise-resiliency performances for wireless image transmission tasks, especially in environments with low channel signal-to-noises (SNRs). However, existing DeepJSCC-based semantic communication frameworks still cannot achieve adaptive code rates for different channel SNRs and image contents, which reduces its flexibility and bandwidth efficiency. In this paper, we propose a predictive and adaptive deep coding (PADC) framework for realizing flexible code rate optimization with a given target transmission quality requirement. PADC is realized by a variable code length enabled DeepJSCC (DeepJSCC-V) model for realizing flexible code length adjustment, an Oracle Network (OraNet) model for predicting peak-signal-to-noise (PSNR) value for an image transmission task according to its contents, channel signal to noise ratio (SNR) and the compression ratio (CR) value, and a CR optimizer aims at finding the minimal data-level or instance-level CR with a PSNR quality constraint. By using the above three modules, PADC can transmit the image data with minimal CR, which greatly increases bandwidth efficiency. Simulation results demonstrate that the proposed DeepJSCC-V model can achieve similar PSNR performances compared with the state-of-the-art Attention-based DeepJSCC (ADJSCC) model, and the proposed OraNet model is able to predict high-quality PSNR values with an average error lower than 0.5dB. Results also demonstrate that the proposed PADC can use nearly minimal bandwidth consumption for wireless image transmission tasks with different channel SNR and image contents, at the same time guaranteeing the PSNR constraint for each image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧的梦完成签到,获得积分10
1秒前
1秒前
子车茗应助黑米粥采纳,获得20
1秒前
surain发布了新的文献求助10
1秒前
xrf完成签到,获得积分10
1秒前
nini发布了新的文献求助10
1秒前
丹D应助宋世伟采纳,获得10
1秒前
yk123发布了新的文献求助10
1秒前
fish发布了新的文献求助10
2秒前
SCS-SHOU发布了新的文献求助10
2秒前
lbj完成签到,获得积分10
2秒前
Rookie应助GJQ采纳,获得10
2秒前
3秒前
CodeCraft应助8star采纳,获得10
3秒前
SciGPT应助majf采纳,获得10
3秒前
苹果味水果完成签到,获得积分20
4秒前
毛毛的家长应助静水流深采纳,获得10
4秒前
4秒前
4秒前
xzq发布了新的文献求助10
4秒前
5秒前
FashionBoy应助陶醉的忆之采纳,获得10
5秒前
花痴的早晨完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
踏实雪一发布了新的文献求助10
5秒前
6秒前
wztin发布了新的文献求助10
6秒前
科研式发布了新的文献求助10
6秒前
sn完成签到,获得积分10
7秒前
arizaki7完成签到,获得积分10
7秒前
是是是咯完成签到,获得积分10
7秒前
mew桑完成签到,获得积分10
8秒前
8秒前
好好吃饭应助黑米粥采纳,获得10
8秒前
JamesPei应助归期采纳,获得10
8秒前
8秒前
8秒前
铁观音发布了新的文献求助10
8秒前
9秒前
zwyoo完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066