亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?

计算机科学 垂钓 万维网 渔业 生物
作者
Kaiyue Ji,Chong Liu,Zhaoqian Liu,Yafeng Deng,Tingjun Hou,Dongsheng Cao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:21
标识
DOI:10.1093/bib/bbad014
摘要

Abstract Identification of potential targets for known bioactive compounds and novel synthetic analogs is of considerable significance. In silico target fishing (TF) has become an alternative strategy because of the expensive and laborious wet-lab experiments, explosive growth of bioactivity data and rapid development of high-throughput technologies. However, these TF methods are based on different algorithms, molecular representations and training datasets, which may lead to different results when predicting the same query molecules. This can be confusing for practitioners in practical applications. Therefore, this study systematically evaluated nine popular ligand-based TF methods based on target and ligand–target pair statistical strategies, which will help practitioners make choices among multiple TF methods. The evaluation results showed that SwissTargetPrediction was the best method to produce the most reliable predictions while enriching more targets. High-recall similarity ensemble approach (SEA) was able to find real targets for more compounds compared with other TF methods. Therefore, SwissTargetPrediction and SEA can be considered as primary selection methods in future studies. In addition, the results showed that k = 5 was the optimal number of experimental candidate targets. Finally, a novel ensemble TF method based on consensus voting is proposed to improve the prediction performance. The precision of the ensemble TF method outperforms the individual TF method, indicating that the ensemble TF method can more effectively identify real targets within a given top-k threshold. The results of this study can be used as a reference to guide practitioners in selecting the most effective methods in computational drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊书白发布了新的文献求助10
20秒前
111完成签到 ,获得积分10
30秒前
58秒前
深情安青应助英俊书白采纳,获得10
1分钟前
领导范儿应助bruna采纳,获得10
1分钟前
勤劳善良的胖蜜蜂完成签到 ,获得积分10
2分钟前
Archers完成签到 ,获得积分10
2分钟前
3分钟前
英俊书白发布了新的文献求助10
3分钟前
许之北完成签到 ,获得积分10
3分钟前
Polymer72应助科研通管家采纳,获得10
3分钟前
Polymer72应助科研通管家采纳,获得10
3分钟前
游大达完成签到,获得积分0
4分钟前
4分钟前
英俊书白完成签到,获得积分20
4分钟前
伏城完成签到 ,获得积分10
4分钟前
hanliulaixi完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助雪上一枝蒿采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
5分钟前
小强完成签到 ,获得积分10
6分钟前
7分钟前
maclogos完成签到,获得积分10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
Polymer72应助科研通管家采纳,获得10
7分钟前
7分钟前
DrleedsG发布了新的文献求助200
9分钟前
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
Polymer72应助科研通管家采纳,获得10
9分钟前
米糖安发布了新的文献求助10
9分钟前
lisaltp完成签到,获得积分10
10分钟前
米糖安完成签到,获得积分10
10分钟前
xinqianying完成签到 ,获得积分10
11分钟前
iris完成签到,获得积分20
11分钟前
DrleedsG完成签到,获得积分10
11分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353523
求助须知:如何正确求助?哪些是违规求助? 2978145
关于积分的说明 8683835
捐赠科研通 2659514
什么是DOI,文献DOI怎么找? 1456277
科研通“疑难数据库(出版商)”最低求助积分说明 674310
邀请新用户注册赠送积分活动 665036