医学
内镜逆行胰胆管造影术
特征(语言学)
情态动词
胰腺炎
随机森林
人工智能
数据挖掘
放射科
内科学
计算机科学
化学
高分子化学
哲学
语言学
作者
Y Xu,Zehua Dong,Li Huang,Hongliu Du,Ting Yang,Chaijie Luo,Tao Xiao,Junxiao Wang,Zhifeng Wu,Lianlian Wu,Rong Lin,Honggang Yu
标识
DOI:10.1016/j.gie.2024.03.033
摘要
Background and study aims The impact of various categories of information on the prediction of Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis (PEP) remains uncertain. We aimed to comprehensively investigate the risk factors associated with PEP by constructing and validating a model incorporating multi-modal data through multiple steps. Patients and Methods A total of 1,916 cases underwent ERCP were retrospectively collected from multiple centers for model construction. Through literature research, 49 electronic health record (EHR) features and one image feature related to PEP were identified. The EHR features were categorized into baseline, diagnosis, technique, and prevent strategies, covering pre-ERCP, intra-ERCP, and peri-ERCP phases. We first incrementally constructed models 1-4 incorporating these four feature categories, then added the image feature into models 1-4 and developed models 5-8. All models underwent testing and comparison using both internal and external test sets. Once the optimal model was selected, we conducted comparison among multiple machine learning algorithms. Results Compared with model 2 incorporating baseline and diagnosis features, adding technique and prevent strategies (model 4) greatly improved the sensitivity (63.89% vs 83.33%, p<0.05) and specificity (75.00% vs 85.92%, p<0.001). Similar tendency was observed in internal and external tests. In model 4, the top three features ranked by weight were previous pancreatitis, NSAIDS, and difficult cannulation. The image-based feature has the highest weight in model 5-8. Lastly, model 8 employed Random Forest algorithm showed the best performance. Conclusions We firstly developed a multi-modal prediction model for identifying PEP with clinical-acceptable performance. The image and technique features are crucial for PEP prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI