Multistep validation of a post-ERCP pancreatitis prediction system integrating multimodal data: a multicenter study

医学 内镜逆行胰胆管造影术 特征(语言学) 情态动词 胰腺炎 基线(sea) 急性胰腺炎 随机森林 人工智能 数据挖掘 放射科 机器学习 内科学 计算机科学 语言学 哲学 高分子化学 化学 海洋学 地质学
作者
Y Xu,Zehua Dong,Li Huang,Hongliu Du,Ting Yang,Chaijie Luo,Tao Xiao,Junxiao Wang,Zhifeng Wu,Lianlian Wu,Rong Lin,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:100 (3): 464-472.e17 被引量:3
标识
DOI:10.1016/j.gie.2024.03.033
摘要

Background and study aims The impact of various categories of information on the prediction of Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis (PEP) remains uncertain. We aimed to comprehensively investigate the risk factors associated with PEP by constructing and validating a model incorporating multi-modal data through multiple steps. Patients and Methods A total of 1,916 cases underwent ERCP were retrospectively collected from multiple centers for model construction. Through literature research, 49 electronic health record (EHR) features and one image feature related to PEP were identified. The EHR features were categorized into baseline, diagnosis, technique, and prevent strategies, covering pre-ERCP, intra-ERCP, and peri-ERCP phases. We first incrementally constructed models 1-4 incorporating these four feature categories, then added the image feature into models 1-4 and developed models 5-8. All models underwent testing and comparison using both internal and external test sets. Once the optimal model was selected, we conducted comparison among multiple machine learning algorithms. Results Compared with model 2 incorporating baseline and diagnosis features, adding technique and prevent strategies (model 4) greatly improved the sensitivity (63.89% vs 83.33%, p<0.05) and specificity (75.00% vs 85.92%, p<0.001). Similar tendency was observed in internal and external tests. In model 4, the top three features ranked by weight were previous pancreatitis, NSAIDS, and difficult cannulation. The image-based feature has the highest weight in model 5-8. Lastly, model 8 employed Random Forest algorithm showed the best performance. Conclusions We firstly developed a multi-modal prediction model for identifying PEP with clinical-acceptable performance. The image and technique features are crucial for PEP prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
科研通AI5应助Dd采纳,获得10
1秒前
2秒前
动听的店员完成签到,获得积分20
2秒前
加油少年完成签到,获得积分10
2秒前
2秒前
科研通AI5应助不吃香菜采纳,获得10
2秒前
wuhuhu发布了新的文献求助10
2秒前
3秒前
小蘑菇应助舒适一手采纳,获得10
3秒前
vooov发布了新的文献求助10
3秒前
3秒前
haveatry发布了新的文献求助30
3秒前
丘比特应助无言已对采纳,获得10
4秒前
达达罗发布了新的文献求助10
4秒前
4秒前
小周周完成签到 ,获得积分10
5秒前
我蛋挞呢应助戽斗采纳,获得50
5秒前
万能图书馆应助jinyu采纳,获得10
6秒前
Geass发布了新的文献求助10
7秒前
7秒前
潇洒皮带完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
万信心发布了新的文献求助10
7秒前
7秒前
戚薇发布了新的文献求助10
7秒前
cwy完成签到,获得积分10
7秒前
taff完成签到,获得积分20
8秒前
受伤丹妗发布了新的文献求助10
8秒前
8秒前
犹豫的晓兰完成签到,获得积分20
9秒前
10秒前
10秒前
英俊的铭应助JUAN采纳,获得10
10秒前
10秒前
yangben完成签到,获得积分10
10秒前
科研通AI2S应助被动科研采纳,获得10
10秒前
10秒前
11秒前
快乐旭尧完成签到,获得积分10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709