Multistep validation of a post-ERCP pancreatitis prediction system integrating multimodal data: a multicenter study

医学 内镜逆行胰胆管造影术 特征(语言学) 情态动词 胰腺炎 基线(sea) 急性胰腺炎 随机森林 人工智能 数据挖掘 放射科 机器学习 内科学 计算机科学 化学 高分子化学 哲学 地质学 海洋学 语言学
作者
Y. Xu,Zehua Dong,Li Huang,Hongliu Du,Ting Yang,Chaijie Luo,Tao Xiao,Junxiao Wang,Zhifeng Wu,Lianlian Wu,Rong Lin,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:100 (3): 464-472.e17 被引量:9
标识
DOI:10.1016/j.gie.2024.03.033
摘要

Background and study aims The impact of various categories of information on the prediction of Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis (PEP) remains uncertain. We aimed to comprehensively investigate the risk factors associated with PEP by constructing and validating a model incorporating multi-modal data through multiple steps. Patients and Methods A total of 1,916 cases underwent ERCP were retrospectively collected from multiple centers for model construction. Through literature research, 49 electronic health record (EHR) features and one image feature related to PEP were identified. The EHR features were categorized into baseline, diagnosis, technique, and prevent strategies, covering pre-ERCP, intra-ERCP, and peri-ERCP phases. We first incrementally constructed models 1-4 incorporating these four feature categories, then added the image feature into models 1-4 and developed models 5-8. All models underwent testing and comparison using both internal and external test sets. Once the optimal model was selected, we conducted comparison among multiple machine learning algorithms. Results Compared with model 2 incorporating baseline and diagnosis features, adding technique and prevent strategies (model 4) greatly improved the sensitivity (63.89% vs 83.33%, p<0.05) and specificity (75.00% vs 85.92%, p<0.001). Similar tendency was observed in internal and external tests. In model 4, the top three features ranked by weight were previous pancreatitis, NSAIDS, and difficult cannulation. The image-based feature has the highest weight in model 5-8. Lastly, model 8 employed Random Forest algorithm showed the best performance. Conclusions We firstly developed a multi-modal prediction model for identifying PEP with clinical-acceptable performance. The image and technique features are crucial for PEP prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sanjun发布了新的文献求助10
刚刚
1秒前
ss完成签到,获得积分20
1秒前
1秒前
九姑娘完成签到 ,获得积分10
2秒前
独特元蝶发布了新的文献求助10
2秒前
Hello应助ZHOU采纳,获得10
2秒前
传奇3应助nqbscxttdh采纳,获得10
3秒前
3秒前
CipherSage应助一个西藏采纳,获得10
4秒前
4秒前
铁塔凌云完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助freesialll采纳,获得10
6秒前
6秒前
背后寒烟发布了新的文献求助10
7秒前
7秒前
7秒前
wanci应助sanjun采纳,获得10
9秒前
9秒前
9秒前
烟花应助能干水杯采纳,获得10
10秒前
10秒前
big ben完成签到 ,获得积分0
11秒前
11秒前
情怀应助siriuslee99采纳,获得10
12秒前
雪意发布了新的文献求助10
12秒前
13秒前
小魏发布了新的文献求助10
13秒前
王柯予发布了新的文献求助10
14秒前
sera发布了新的文献求助10
14秒前
心碎的黄焖鸡完成签到 ,获得积分10
15秒前
小椰喃喃完成签到,获得积分10
15秒前
15秒前
平淡的绮彤完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
小马甲应助沉静胜采纳,获得10
17秒前
pihriyyy完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646573
求助须知:如何正确求助?哪些是违规求助? 4771751
关于积分的说明 15035677
捐赠科研通 4805321
什么是DOI,文献DOI怎么找? 2569625
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485858