Multistep validation of a post-ERCP pancreatitis prediction system integrating multimodal data: a multicenter study

医学 内镜逆行胰胆管造影术 特征(语言学) 情态动词 胰腺炎 基线(sea) 急性胰腺炎 随机森林 人工智能 数据挖掘 放射科 机器学习 内科学 计算机科学 语言学 哲学 高分子化学 化学 海洋学 地质学
作者
Y Xu,Zehua Dong,Li Huang,Hongliu Du,Ting Yang,Chaijie Luo,Tao Xiao,Junxiao Wang,Zhifeng Wu,Lianlian Wu,Rong Lin,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:100 (3): 464-472.e17 被引量:3
标识
DOI:10.1016/j.gie.2024.03.033
摘要

Background and study aims The impact of various categories of information on the prediction of Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis (PEP) remains uncertain. We aimed to comprehensively investigate the risk factors associated with PEP by constructing and validating a model incorporating multi-modal data through multiple steps. Patients and Methods A total of 1,916 cases underwent ERCP were retrospectively collected from multiple centers for model construction. Through literature research, 49 electronic health record (EHR) features and one image feature related to PEP were identified. The EHR features were categorized into baseline, diagnosis, technique, and prevent strategies, covering pre-ERCP, intra-ERCP, and peri-ERCP phases. We first incrementally constructed models 1-4 incorporating these four feature categories, then added the image feature into models 1-4 and developed models 5-8. All models underwent testing and comparison using both internal and external test sets. Once the optimal model was selected, we conducted comparison among multiple machine learning algorithms. Results Compared with model 2 incorporating baseline and diagnosis features, adding technique and prevent strategies (model 4) greatly improved the sensitivity (63.89% vs 83.33%, p<0.05) and specificity (75.00% vs 85.92%, p<0.001). Similar tendency was observed in internal and external tests. In model 4, the top three features ranked by weight were previous pancreatitis, NSAIDS, and difficult cannulation. The image-based feature has the highest weight in model 5-8. Lastly, model 8 employed Random Forest algorithm showed the best performance. Conclusions We firstly developed a multi-modal prediction model for identifying PEP with clinical-acceptable performance. The image and technique features are crucial for PEP prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的高山完成签到 ,获得积分10
1秒前
CodeCraft应助LinHan采纳,获得10
1秒前
辛勤的管道工完成签到,获得积分10
2秒前
wo完成签到 ,获得积分10
3秒前
6秒前
6秒前
匡吉六个日完成签到 ,获得积分10
8秒前
8秒前
CGBY完成签到 ,获得积分10
9秒前
Tanzey发布了新的文献求助10
10秒前
ark861023发布了新的文献求助10
12秒前
Rhythm完成签到 ,获得积分10
12秒前
科研通AI5应助啦啦啦啦采纳,获得10
13秒前
goodgirl完成签到 ,获得积分10
14秒前
wucl1990发布了新的文献求助10
14秒前
Unicode完成签到,获得积分10
15秒前
夜无霜666完成签到,获得积分10
16秒前
ouiiiblue完成签到,获得积分10
18秒前
Tanzey完成签到,获得积分20
19秒前
20秒前
赘婿应助lxy采纳,获得10
20秒前
20秒前
Zkxxxx驳回了打打应助
22秒前
22秒前
暴躁的忆丹完成签到,获得积分10
23秒前
SS发布了新的文献求助10
23秒前
上官若男应助wucl1990采纳,获得10
23秒前
苗条馒头完成签到,获得积分10
24秒前
ZeKaWa应助可耐的不平采纳,获得10
24秒前
26秒前
偷喝一口旺仔完成签到 ,获得积分20
26秒前
今后应助chen采纳,获得10
26秒前
27秒前
29秒前
30秒前
30秒前
31秒前
要有锋芒的善良完成签到,获得积分10
31秒前
32秒前
cxzhao完成签到,获得积分10
32秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
储氢技术与材料 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3683202
求助须知:如何正确求助?哪些是违规求助? 3234656
关于积分的说明 9815626
捐赠科研通 2946190
什么是DOI,文献DOI怎么找? 1615496
邀请新用户注册赠送积分活动 762963
科研通“疑难数据库(出版商)”最低求助积分说明 737642