Multi-step validation of a Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis prediction system integrating multi-modal data: A multi-center study

医学 内镜逆行胰胆管造影术 特征(语言学) 情态动词 胰腺炎 随机森林 人工智能 数据挖掘 放射科 内科学 计算机科学 化学 高分子化学 哲学 语言学
作者
Y Xu,Zehua Dong,Li Huang,Hongliu Du,Ting Yang,Chaijie Luo,Tao Xiao,Junxiao Wang,Zhifeng Wu,Lianlian Wu,Rong Lin,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
标识
DOI:10.1016/j.gie.2024.03.033
摘要

Background and study aims The impact of various categories of information on the prediction of Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis (PEP) remains uncertain. We aimed to comprehensively investigate the risk factors associated with PEP by constructing and validating a model incorporating multi-modal data through multiple steps. Patients and Methods A total of 1,916 cases underwent ERCP were retrospectively collected from multiple centers for model construction. Through literature research, 49 electronic health record (EHR) features and one image feature related to PEP were identified. The EHR features were categorized into baseline, diagnosis, technique, and prevent strategies, covering pre-ERCP, intra-ERCP, and peri-ERCP phases. We first incrementally constructed models 1-4 incorporating these four feature categories, then added the image feature into models 1-4 and developed models 5-8. All models underwent testing and comparison using both internal and external test sets. Once the optimal model was selected, we conducted comparison among multiple machine learning algorithms. Results Compared with model 2 incorporating baseline and diagnosis features, adding technique and prevent strategies (model 4) greatly improved the sensitivity (63.89% vs 83.33%, p<0.05) and specificity (75.00% vs 85.92%, p<0.001). Similar tendency was observed in internal and external tests. In model 4, the top three features ranked by weight were previous pancreatitis, NSAIDS, and difficult cannulation. The image-based feature has the highest weight in model 5-8. Lastly, model 8 employed Random Forest algorithm showed the best performance. Conclusions We firstly developed a multi-modal prediction model for identifying PEP with clinical-acceptable performance. The image and technique features are crucial for PEP prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逢场作戱__完成签到 ,获得积分10
3秒前
xaopng完成签到,获得积分10
13秒前
端庄的孤风完成签到 ,获得积分10
17秒前
chenbin完成签到,获得积分10
25秒前
陈米花完成签到,获得积分10
25秒前
yyjl31完成签到,获得积分10
25秒前
Simon_chat完成签到,获得积分10
25秒前
吐司炸弹完成签到,获得积分10
32秒前
mayfly完成签到,获得积分10
32秒前
大呲花完成签到,获得积分10
33秒前
包子完成签到,获得积分10
39秒前
传奇完成签到 ,获得积分10
53秒前
无花果应助ybwei2008_163采纳,获得10
56秒前
Jackcaosky完成签到 ,获得积分10
57秒前
wwqing0704完成签到,获得积分10
1分钟前
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
充电宝应助ybwei2008_163采纳,获得10
2分钟前
郑雅柔完成签到 ,获得积分10
2分钟前
小蕾完成签到 ,获得积分10
2分钟前
陈俊雷完成签到 ,获得积分10
2分钟前
weihe完成签到 ,获得积分10
2分钟前
foyefeng完成签到,获得积分10
2分钟前
3分钟前
榆木小鸟完成签到 ,获得积分10
3分钟前
阿俊1212发布了新的文献求助10
3分钟前
3分钟前
dichunxia完成签到,获得积分10
3分钟前
科研小白一枚完成签到,获得积分10
3分钟前
ybwei2008_163发布了新的文献求助10
3分钟前
阿俊1212完成签到,获得积分10
3分钟前
juan完成签到 ,获得积分10
3分钟前
3分钟前
guan发布了新的文献求助10
3分钟前
沙海沉戈完成签到,获得积分0
3分钟前
花园里的蒜完成签到 ,获得积分0
3分钟前
科研通AI2S应助guan采纳,获得10
3分钟前
Kevin发布了新的文献求助30
3分钟前
leave完成签到 ,获得积分10
4分钟前
鱼鱼鱼完成签到 ,获得积分10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139615
求助须知:如何正确求助?哪些是违规求助? 2790511
关于积分的说明 7795430
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176