Study on multi-factor casing damage prediction method based on machine learning

套管 计算机科学 因子(编程语言) 可靠性工程 工程类 机器学习 人工智能 机械工程 程序设计语言
作者
Fuli Li,Wei Yan,Xiaoyuan Kong,Juan Li,Wei Zhang,Zeze Kang,Yang Tao,Qiuqiong Tang,Kongyang Wang,Chaodong Tan
出处
期刊:Energy [Elsevier]
卷期号:296: 131044-131044
标识
DOI:10.1016/j.energy.2024.131044
摘要

Casing damage is one of the common problems encountered in reservoir development, which seriously affects the normal production of the oil field. In this study, through the analysis of oil field data, a casing damage model under the coupling effects of mudstone hydration-corrosion and sand production-corrosion was established. Thirty-four influencing factors of casing damage were determined in four categories: geology, engineering, development, and corrosion. Six machine learning methods were used to predict the probability of casing damage under the coupling effects of multiple factors. The generalization performance of the model was evaluated using the recall rate of casing damage wells and accuracy. The results show that the random forest and LightGBM models show the best generalization performance. The prediction accuracy rates of the two models on the test set were 84.2% and 85.9%, respectively, and the random forest model showed an excellent performance of 92.3% on the recall rate of casing damage wells. Finally, the optimized model was used to perform sensitivity analysis on each influencing factor, and the main controlling factors of casing damage were obtained. Engineering measures to prevent casing damage are proposed. This study has made outstanding contributions to improving the economic benefits of the oilfield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助毛毛虫采纳,获得10
刚刚
1秒前
1秒前
1秒前
2秒前
nnnick完成签到,获得积分0
2秒前
3秒前
Cola完成签到,获得积分10
3秒前
浮名半生发布了新的文献求助10
3秒前
研究牲完成签到,获得积分10
3秒前
小孙发布了新的文献求助10
4秒前
请记住这个女人叫小美完成签到 ,获得积分20
5秒前
5秒前
思源应助VERY采纳,获得10
7秒前
8秒前
认真科研发布了新的文献求助10
8秒前
Savitr发布了新的文献求助10
8秒前
CipherSage应助FJH采纳,获得10
8秒前
镭射眼完成签到,获得积分10
9秒前
六碗鱼发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
善学以致用应助Hayat采纳,获得20
12秒前
12秒前
将离发布了新的文献求助10
12秒前
12秒前
LARS完成签到,获得积分10
13秒前
14秒前
shadow完成签到 ,获得积分10
14秒前
明理宛秋完成签到 ,获得积分10
16秒前
香蕉觅云应助yyq617569158采纳,获得10
16秒前
17秒前
酷波er应助二条采纳,获得10
17秒前
VERY发布了新的文献求助10
18秒前
adoretheall发布了新的文献求助10
19秒前
毛毛虫发布了新的文献求助10
20秒前
20秒前
在水一方应助我的学习采纳,获得10
21秒前
thchiang发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158072
求助须知:如何正确求助?哪些是违规求助? 2809436
关于积分的说明 7881999
捐赠科研通 2467898
什么是DOI,文献DOI怎么找? 1313783
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943