Study on multi-factor casing damage prediction method based on machine learning

套管 计算机科学 因子(编程语言) 可靠性工程 工程类 机器学习 人工智能 机械工程 程序设计语言
作者
Fuli Li,Wei Yan,Xiaoyuan Kong,Juan Li,Wei Zhang,Zeze Kang,Yang Tao,Qiuqiong Tang,Kongyang Wang,Chaodong Tan
出处
期刊:Energy [Elsevier BV]
卷期号:296: 131044-131044
标识
DOI:10.1016/j.energy.2024.131044
摘要

Casing damage is one of the common problems encountered in reservoir development, which seriously affects the normal production of the oil field. In this study, through the analysis of oil field data, a casing damage model under the coupling effects of mudstone hydration-corrosion and sand production-corrosion was established. Thirty-four influencing factors of casing damage were determined in four categories: geology, engineering, development, and corrosion. Six machine learning methods were used to predict the probability of casing damage under the coupling effects of multiple factors. The generalization performance of the model was evaluated using the recall rate of casing damage wells and accuracy. The results show that the random forest and LightGBM models show the best generalization performance. The prediction accuracy rates of the two models on the test set were 84.2% and 85.9%, respectively, and the random forest model showed an excellent performance of 92.3% on the recall rate of casing damage wells. Finally, the optimized model was used to perform sensitivity analysis on each influencing factor, and the main controlling factors of casing damage were obtained. Engineering measures to prevent casing damage are proposed. This study has made outstanding contributions to improving the economic benefits of the oilfield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研互通完成签到,获得积分10
刚刚
阿容发布了新的文献求助10
1秒前
所所应助感动水杯采纳,获得10
1秒前
万能图书馆应助优雅盼海采纳,获得10
2秒前
鹤轸完成签到,获得积分10
2秒前
饼子完成签到,获得积分10
2秒前
2秒前
2秒前
lili完成签到 ,获得积分10
3秒前
学术牛马发布了新的文献求助10
3秒前
庄小鱼发布了新的文献求助10
3秒前
Lan完成签到 ,获得积分10
3秒前
赘婿应助高大的易蓉采纳,获得10
3秒前
linjunqi完成签到,获得积分10
3秒前
章宇完成签到,获得积分20
4秒前
H1122发布了新的文献求助10
4秒前
mogeko完成签到,获得积分10
4秒前
Hong完成签到,获得积分10
4秒前
上官从菡完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
健忘飞风完成签到,获得积分10
4秒前
Katsuya完成签到,获得积分10
4秒前
汉堡包应助酷酷妙梦采纳,获得10
5秒前
叶子完成签到,获得积分10
5秒前
科研虎发布了新的文献求助10
5秒前
zhangshu发布了新的文献求助10
5秒前
yang完成签到,获得积分10
6秒前
李星发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
斯文败类应助明亮采纳,获得10
8秒前
哈哈哈哈哈哈哈完成签到,获得积分10
8秒前
8秒前
张张张完成签到 ,获得积分10
9秒前
仿生躯壳完成签到,获得积分10
9秒前
苏卿发布了新的文献求助10
9秒前
wuwa完成签到,获得积分10
9秒前
junmahmu完成签到,获得积分10
10秒前
甜桃完成签到,获得积分10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259