Study on multi-factor casing damage prediction method based on machine learning

套管 计算机科学 因子(编程语言) 可靠性工程 工程类 机器学习 人工智能 机械工程 程序设计语言
作者
Fuli Li,Wei Yan,Xiaoyuan Kong,Juan Li,Wei Zhang,Zeze Kang,Yang Tao,Qiuqiong Tang,Kongyang Wang,Chaodong Tan
出处
期刊:Energy [Elsevier]
卷期号:296: 131044-131044
标识
DOI:10.1016/j.energy.2024.131044
摘要

Casing damage is one of the common problems encountered in reservoir development, which seriously affects the normal production of the oil field. In this study, through the analysis of oil field data, a casing damage model under the coupling effects of mudstone hydration-corrosion and sand production-corrosion was established. Thirty-four influencing factors of casing damage were determined in four categories: geology, engineering, development, and corrosion. Six machine learning methods were used to predict the probability of casing damage under the coupling effects of multiple factors. The generalization performance of the model was evaluated using the recall rate of casing damage wells and accuracy. The results show that the random forest and LightGBM models show the best generalization performance. The prediction accuracy rates of the two models on the test set were 84.2% and 85.9%, respectively, and the random forest model showed an excellent performance of 92.3% on the recall rate of casing damage wells. Finally, the optimized model was used to perform sensitivity analysis on each influencing factor, and the main controlling factors of casing damage were obtained. Engineering measures to prevent casing damage are proposed. This study has made outstanding contributions to improving the economic benefits of the oilfield.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半个灵魂发布了新的文献求助10
1秒前
裴荣华发布了新的文献求助20
1秒前
2秒前
新明发布了新的文献求助10
2秒前
hsduwguy发布了新的文献求助10
2秒前
3秒前
无绮发布了新的文献求助10
5秒前
6秒前
Gyy完成签到,获得积分10
8秒前
水三寿完成签到,获得积分20
10秒前
10秒前
xuanyu应助神勇的香魔采纳,获得10
11秒前
吉祥财子完成签到,获得积分10
11秒前
12秒前
nwds完成签到,获得积分10
12秒前
林也行完成签到,获得积分10
13秒前
13秒前
xuxian完成签到 ,获得积分10
13秒前
沉默的谷秋完成签到,获得积分10
14秒前
新明完成签到,获得积分10
14秒前
16秒前
17秒前
18秒前
caikeke发布了新的文献求助10
18秒前
Ting发布了新的文献求助10
18秒前
19秒前
上官若男应助hxd采纳,获得10
19秒前
19秒前
AppleDog发布了新的文献求助10
21秒前
22秒前
Yjh发布了新的文献求助10
22秒前
谦让夜香完成签到,获得积分10
24秒前
Cat应助胡豆豆采纳,获得30
25秒前
25秒前
28秒前
耍酷千山发布了新的文献求助10
28秒前
一碗鱼发布了新的文献求助10
29秒前
min17完成签到,获得积分10
29秒前
AppleDog完成签到,获得积分10
30秒前
goodesBright应助wwwchhh采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055485
求助须知:如何正确求助?哪些是违规求助? 2712292
关于积分的说明 7430453
捐赠科研通 2357116
什么是DOI,文献DOI怎么找? 1248604
科研通“疑难数据库(出版商)”最低求助积分说明 606750
版权声明 596093