峰度
特征提取
断层(地质)
计算机科学
自回归模型
反褶积
噪音(视频)
信号(编程语言)
预处理器
信号处理
熵(时间箭头)
背景噪声
模式识别(心理学)
人工智能
算法
数字信号处理
数学
统计
电信
地震学
地质学
物理
量子力学
计算机硬件
图像(数学)
程序设计语言
摘要
Gear fault features are submerged in strong background noise with the influence of background noise and vibration signal transmission paths. The adaptive auto-regressive (AR) model with the largest spectral kurtosis (SK) can effectively eliminate the linear stationary part of the signal, which is selected for signal preprocessing. Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is suitable for the extraction of periodic fault signal fault features in rotating machinery. Therefore, the adaptive AR and MOMEDA are combined to extract gear fault features, which is verified by experimental results.
科研通智能强力驱动
Strongly Powered by AbleSci AI