Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction

计算机科学 频域 迭代重建 过程(计算) 人工智能 噪音(视频) 扩散 图像(数学) 计算机视觉 算法 模式识别(心理学) 物理 热力学 操作系统
作者
Yu Guan,Chuanming Yu,Zhuo‐Xu Cui,Huilin Zhou,Qiegen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tmi.2024.3381610
摘要

Given the obstacle in accentuating the reconstruction accuracy for diagnostically significant tissues, most existing MRI reconstruction methods perform targeted reconstruction of the entire MR image without considering fine details, especially when dealing with highly under-sampled images. Therefore, a considerable volume of efforts has been directed towards surmounting this challenge, as evidenced by the emergence of numerous methods dedicated to preserving high-frequency content as well as fine textural details in the reconstructed image. In this case, exploring the merits associated with each method of mining high-frequency information and formulating a reasonable principle to maximize the joint utilization of these approaches will be a more effective solution to achieve accurate reconstruction. Specifically, this work constructs an innovative principle named Correlated and Multi-frequency Diffusion Model (CM-DM) for highly under-sampled MRI reconstruction. In essence, the rationale underlying the establishment of such principle lies not in assembling arbitrary models, but in pursuing the effective combinations and replacement of components. It also means that the novel principle focuses on forming a correlated and multi-frequency prior through different high-frequency operators in the diffusion process. Moreover, multi-frequency prior further constraints the noise term closer to the target distribution in the frequency domain, thereby making the diffusion process converge faster. Experimental results verify that the proposed method achieved superior reconstruction accuracy, with a notable enhancement of approximately 2dB in PSNR compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助安静曼云采纳,获得10
刚刚
shekunxuan发布了新的文献求助10
1秒前
1秒前
俣众不同发布了新的文献求助10
2秒前
Hou完成签到 ,获得积分10
3秒前
FC完成签到,获得积分20
3秒前
超级的访天完成签到,获得积分10
4秒前
5秒前
6秒前
FC发布了新的文献求助10
6秒前
焱焱不忘完成签到 ,获得积分0
7秒前
7秒前
赘婿应助Violet采纳,获得10
8秒前
北冥有鱼完成签到 ,获得积分10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Twonej应助科研通管家采纳,获得30
9秒前
Akim应助科研通管家采纳,获得10
9秒前
蓝天应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
Twonej应助科研通管家采纳,获得30
10秒前
Akim应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
Luna_aaa应助科研通管家采纳,获得10
10秒前
Luna_aaa应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
傲娇的凡应助科研通管家采纳,获得10
10秒前
asdfzxcv应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643668
求助须知:如何正确求助?哪些是违规求助? 4761770
关于积分的说明 15021824
捐赠科研通 4801962
什么是DOI,文献DOI怎么找? 2567166
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484449