Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction

计算机科学 频域 迭代重建 过程(计算) 人工智能 噪音(视频) 扩散 图像(数学) 计算机视觉 算法 模式识别(心理学) 热力学 操作系统 物理
作者
Yu Guan,Chuanming Yu,Zhuo‐Xu Cui,Huilin Zhou,Qiegen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tmi.2024.3381610
摘要

Given the obstacle in accentuating the reconstruction accuracy for diagnostically significant tissues, most existing MRI reconstruction methods perform targeted reconstruction of the entire MR image without considering fine details, especially when dealing with highly under-sampled images. Therefore, a considerable volume of efforts has been directed towards surmounting this challenge, as evidenced by the emergence of numerous methods dedicated to preserving high-frequency content as well as fine textural details in the reconstructed image. In this case, exploring the merits associated with each method of mining high-frequency information and formulating a reasonable principle to maximize the joint utilization of these approaches will be a more effective solution to achieve accurate reconstruction. Specifically, this work constructs an innovative principle named Correlated and Multi-frequency Diffusion Model (CM-DM) for highly under-sampled MRI reconstruction. In essence, the rationale underlying the establishment of such principle lies not in assembling arbitrary models, but in pursuing the effective combinations and replacement of components. It also means that the novel principle focuses on forming a correlated and multi-frequency prior through different high-frequency operators in the diffusion process. Moreover, multi-frequency prior further constraints the noise term closer to the target distribution in the frequency domain, thereby making the diffusion process converge faster. Experimental results verify that the proposed method achieved superior reconstruction accuracy, with a notable enhancement of approximately 2dB in PSNR compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
surlamper完成签到,获得积分10
刚刚
Mo完成签到,获得积分10
刚刚
hahaha2完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
婉枫完成签到,获得积分10
1秒前
徐彬荣完成签到,获得积分10
1秒前
往昔不过微澜完成签到,获得积分10
1秒前
spider534完成签到,获得积分10
2秒前
好好应助科研通管家采纳,获得10
2秒前
好好应助科研通管家采纳,获得10
2秒前
好好应助科研通管家采纳,获得10
2秒前
好好应助科研通管家采纳,获得10
2秒前
2秒前
好好应助科研通管家采纳,获得10
2秒前
2秒前
TGU的小马同学完成签到 ,获得积分10
2秒前
2秒前
2秒前
量子咸鱼K完成签到,获得积分10
3秒前
冰冻芋头完成签到,获得积分10
3秒前
hahaha1完成签到,获得积分10
3秒前
fate完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
changjinglu发布了新的文献求助10
7秒前
风信子deon01完成签到,获得积分10
7秒前
Daisy发布了新的文献求助10
11秒前
追梦人2016完成签到 ,获得积分10
11秒前
suiyue完成签到 ,获得积分10
12秒前
杏林靴子完成签到,获得积分10
12秒前
酷波er应助jdjf采纳,获得10
12秒前
18秒前
19秒前
weila完成签到 ,获得积分10
22秒前
jie完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
jdjf发布了新的文献求助10
26秒前
文静鸡翅完成签到 ,获得积分10
26秒前
孤独妙柏完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664739
求助须知:如何正确求助?哪些是违规求助? 4868979
关于积分的说明 15108502
捐赠科研通 4823434
什么是DOI,文献DOI怎么找? 2582356
邀请新用户注册赠送积分活动 1536359
关于科研通互助平台的介绍 1494797