清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction

计算机科学 频域 迭代重建 过程(计算) 人工智能 噪音(视频) 扩散 图像(数学) 计算机视觉 算法 模式识别(心理学) 物理 热力学 操作系统
作者
Yu Guan,Chuanming Yu,Zhuo‐Xu Cui,Huilin Zhou,Qiegen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3381610
摘要

Given the obstacle in accentuating the reconstruction accuracy for diagnostically significant tissues, most existing MRI reconstruction methods perform targeted reconstruction of the entire MR image without considering fine details, especially when dealing with highly under-sampled images. Therefore, a considerable volume of efforts has been directed towards surmounting this challenge, as evidenced by the emergence of numerous methods dedicated to preserving high-frequency content as well as fine textural details in the reconstructed image. In this case, exploring the merits associated with each method of mining high-frequency information and formulating a reasonable principle to maximize the joint utilization of these approaches will be a more effective solution to achieve accurate reconstruction. Specifically, this work constructs an innovative principle named Correlated and Multi-frequency Diffusion Model (CM-DM) for highly under-sampled MRI reconstruction. In essence, the rationale underlying the establishment of such principle lies not in assembling arbitrary models, but in pursuing the effective combinations and replacement of components. It also means that the novel principle focuses on forming a correlated and multi-frequency prior through different high-frequency operators in the diffusion process. Moreover, multi-frequency prior further constraints the noise term closer to the target distribution in the frequency domain, thereby making the diffusion process converge faster. Experimental results verify that the proposed method achieved superior reconstruction accuracy, with a notable enhancement of approximately 2dB in PSNR compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助怪杰采纳,获得10
2秒前
思源应助Dz1990m采纳,获得10
10秒前
怪杰发布了新的文献求助10
24秒前
28秒前
Dz1990m发布了新的文献求助10
33秒前
38秒前
怪杰发布了新的文献求助10
43秒前
大个应助怪杰采纳,获得10
53秒前
量子星尘发布了新的文献求助80
53秒前
1分钟前
1分钟前
郜郜嗳发布了新的文献求助10
1分钟前
怪杰发布了新的文献求助10
1分钟前
火星的雪完成签到 ,获得积分10
1分钟前
郜郜嗳完成签到,获得积分10
1分钟前
万能图书馆应助怪杰采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
kokoko完成签到,获得积分10
2分钟前
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
Sunny完成签到,获得积分10
3分钟前
3分钟前
英喆完成签到 ,获得积分10
3分钟前
arsenal完成签到 ,获得积分10
3分钟前
ryan1300完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
怪杰发布了新的文献求助10
3分钟前
火之高兴完成签到 ,获得积分10
3分钟前
3分钟前
Skywings完成签到,获得积分10
4分钟前
怪杰发布了新的文献求助10
4分钟前
4分钟前
Angela发布了新的文献求助10
4分钟前
JamesPei应助怪杰采纳,获得10
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292