亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction

计算机科学 频域 迭代重建 过程(计算) 人工智能 噪音(视频) 扩散 图像(数学) 计算机视觉 算法 模式识别(心理学) 物理 热力学 操作系统
作者
Yu Guan,Chuanming Yu,Zhuo‐Xu Cui,Huilin Zhou,Qiegen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tmi.2024.3381610
摘要

Given the obstacle in accentuating the reconstruction accuracy for diagnostically significant tissues, most existing MRI reconstruction methods perform targeted reconstruction of the entire MR image without considering fine details, especially when dealing with highly under-sampled images. Therefore, a considerable volume of efforts has been directed towards surmounting this challenge, as evidenced by the emergence of numerous methods dedicated to preserving high-frequency content as well as fine textural details in the reconstructed image. In this case, exploring the merits associated with each method of mining high-frequency information and formulating a reasonable principle to maximize the joint utilization of these approaches will be a more effective solution to achieve accurate reconstruction. Specifically, this work constructs an innovative principle named Correlated and Multi-frequency Diffusion Model (CM-DM) for highly under-sampled MRI reconstruction. In essence, the rationale underlying the establishment of such principle lies not in assembling arbitrary models, but in pursuing the effective combinations and replacement of components. It also means that the novel principle focuses on forming a correlated and multi-frequency prior through different high-frequency operators in the diffusion process. Moreover, multi-frequency prior further constraints the noise term closer to the target distribution in the frequency domain, thereby making the diffusion process converge faster. Experimental results verify that the proposed method achieved superior reconstruction accuracy, with a notable enhancement of approximately 2dB in PSNR compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助江江江采纳,获得10
1秒前
4秒前
吃点水果保护局完成签到,获得积分10
7秒前
所所应助能干的小赵采纳,获得10
12秒前
小李新人完成签到 ,获得积分0
19秒前
21秒前
26秒前
善学以致用应助111采纳,获得10
30秒前
丘比特应助宇宙超人007008采纳,获得10
30秒前
风中松鼠应助xingxing采纳,获得20
34秒前
小歘歘完成签到 ,获得积分10
34秒前
37秒前
卷毛维安发布了新的文献求助10
38秒前
哈哈带完成签到,获得积分10
39秒前
晚星完成签到 ,获得积分10
40秒前
42秒前
JJ关注了科研通微信公众号
52秒前
richang完成签到,获得积分10
53秒前
53秒前
56秒前
111发布了新的文献求助10
58秒前
12A完成签到,获得积分10
58秒前
orixero应助shinn采纳,获得10
59秒前
自然的致远完成签到,获得积分10
1分钟前
1分钟前
思源应助瑕不掩瑜采纳,获得10
1分钟前
48da发布了新的文献求助10
1分钟前
科研通AI6.1应助卷毛维安采纳,获得10
1分钟前
BowieHuang应助ecnu搬砖人采纳,获得30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研修沟发布了新的文献求助30
1分钟前
艺阳完成签到,获得积分10
1分钟前
1分钟前
JJ发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772347
求助须知:如何正确求助?哪些是违规求助? 5597618
关于积分的说明 15429486
捐赠科研通 4905352
什么是DOI,文献DOI怎么找? 2639330
邀请新用户注册赠送积分活动 1587278
关于科研通互助平台的介绍 1542120