Correlated and Multi-frequency Diffusion Modeling for Highly Under-sampled MRI Reconstruction

计算机科学 频域 迭代重建 过程(计算) 人工智能 噪音(视频) 扩散 图像(数学) 计算机视觉 算法 模式识别(心理学) 热力学 操作系统 物理
作者
Yu Guan,Chuanming Yu,Zhuo‐Xu Cui,Huilin Zhou,Qiegen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tmi.2024.3381610
摘要

Given the obstacle in accentuating the reconstruction accuracy for diagnostically significant tissues, most existing MRI reconstruction methods perform targeted reconstruction of the entire MR image without considering fine details, especially when dealing with highly under-sampled images. Therefore, a considerable volume of efforts has been directed towards surmounting this challenge, as evidenced by the emergence of numerous methods dedicated to preserving high-frequency content as well as fine textural details in the reconstructed image. In this case, exploring the merits associated with each method of mining high-frequency information and formulating a reasonable principle to maximize the joint utilization of these approaches will be a more effective solution to achieve accurate reconstruction. Specifically, this work constructs an innovative principle named Correlated and Multi-frequency Diffusion Model (CM-DM) for highly under-sampled MRI reconstruction. In essence, the rationale underlying the establishment of such principle lies not in assembling arbitrary models, but in pursuing the effective combinations and replacement of components. It also means that the novel principle focuses on forming a correlated and multi-frequency prior through different high-frequency operators in the diffusion process. Moreover, multi-frequency prior further constraints the noise term closer to the target distribution in the frequency domain, thereby making the diffusion process converge faster. Experimental results verify that the proposed method achieved superior reconstruction accuracy, with a notable enhancement of approximately 2dB in PSNR compared to state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
nini发布了新的文献求助30
1秒前
1秒前
1秒前
Z.完成签到,获得积分20
2秒前
bmhs2017应助闭眼的鱼采纳,获得150
2秒前
华仔应助今天吃什么采纳,获得10
2秒前
大个应助细心的雁玉采纳,获得10
2秒前
eric888应助whuyyz采纳,获得100
2秒前
3秒前
TMAC发布了新的文献求助10
3秒前
小二郎应助soini采纳,获得10
3秒前
元谷雪发布了新的文献求助10
4秒前
mimosal发布了新的文献求助10
5秒前
5秒前
隐形红牛发布了新的文献求助10
5秒前
呜呜完成签到,获得积分10
5秒前
wang11完成签到,获得积分10
6秒前
SciGPT应助麦克雷采纳,获得10
6秒前
完美世界应助薯条采纳,获得10
6秒前
萧秋灵完成签到,获得积分10
7秒前
饲养员发布了新的文献求助10
8秒前
soini完成签到,获得积分10
8秒前
脑洞疼应助不想太多采纳,获得10
9秒前
10秒前
10秒前
10秒前
高达的纸飞机给高达的纸飞机的求助进行了留言
10秒前
在水一方应助Hou采纳,获得10
11秒前
可耐的稀完成签到,获得积分10
11秒前
清秀迎彤完成签到,获得积分10
13秒前
nini完成签到,获得积分20
13秒前
13秒前
小蚂蚁完成签到,获得积分10
14秒前
趣多多发布了新的文献求助10
14秒前
执着睫毛完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405125
求助须知:如何正确求助?哪些是违规求助? 4523421
关于积分的说明 14093529
捐赠科研通 4437096
什么是DOI,文献DOI怎么找? 2435492
邀请新用户注册赠送积分活动 1427695
关于科研通互助平台的介绍 1406012