Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈又晴发布了新的文献求助10
刚刚
冷傲的罡完成签到,获得积分20
刚刚
李龙波发布了新的文献求助10
刚刚
刚刚
nine2652完成签到 ,获得积分10
1秒前
1秒前
dew应助高小明采纳,获得10
1秒前
1秒前
甜美的瑾瑜完成签到,获得积分10
1秒前
和谐断天发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
qee完成签到,获得积分20
1秒前
默默发布了新的文献求助10
2秒前
djshao发布了新的文献求助10
2秒前
2秒前
dg完成签到,获得积分10
3秒前
kaka应助涟漪采纳,获得10
3秒前
勤劳白翠完成签到,获得积分10
3秒前
wwwwww完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
太阳完成签到,获得积分10
3秒前
djxdjt完成签到,获得积分10
4秒前
完美世界应助小陈采纳,获得10
4秒前
5秒前
lh完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
甄无敌发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
KANG完成签到,获得积分10
6秒前
6秒前
正直纸飞机完成签到,获得积分10
6秒前
猪猪完成签到,获得积分20
7秒前
狂野白梅发布了新的文献求助10
7秒前
浪费完成签到 ,获得积分10
7秒前
7秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659029
求助须知:如何正确求助?哪些是违规求助? 4825538
关于积分的说明 15084770
捐赠科研通 4817717
什么是DOI,文献DOI怎么找? 2578307
邀请新用户注册赠送积分活动 1532998
关于科研通互助平台的介绍 1491715