Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
gs发布了新的文献求助10
1秒前
1秒前
研友_841zXL完成签到,获得积分0
1秒前
童宝完成签到,获得积分10
2秒前
天天快乐应助吃菠萝大王采纳,获得10
2秒前
酷波er应助火星上云朵采纳,获得10
2秒前
Hyh_发布了新的文献求助10
2秒前
爱库珀发布了新的文献求助10
3秒前
histhb完成签到,获得积分10
3秒前
搜集达人应助华杰采纳,获得10
3秒前
4秒前
江川直子完成签到,获得积分10
4秒前
xxl1031237415发布了新的文献求助10
5秒前
5秒前
NIHAO发布了新的文献求助10
5秒前
Parsifal发布了新的文献求助30
6秒前
limz完成签到,获得积分10
6秒前
6秒前
Jiayou Zhang发布了新的文献求助10
7秒前
王kk发布了新的文献求助10
7秒前
唐氏梦蝴蝶关注了科研通微信公众号
7秒前
小马甲应助断了的弦采纳,获得10
7秒前
烟花应助yyryyrr采纳,获得10
8秒前
科研通AI6应助复杂的宝莹采纳,获得10
8秒前
9秒前
9秒前
Argetlam2012完成签到 ,获得积分10
9秒前
9秒前
脑洞疼应助专一的无颜采纳,获得10
10秒前
wackykao发布了新的文献求助10
10秒前
10秒前
无极微光应助文静达采纳,获得20
10秒前
开心小霸王完成签到 ,获得积分10
10秒前
桀庚发布了新的文献求助10
10秒前
ankk发布了新的文献求助10
11秒前
十一十八发布了新的文献求助100
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519544
求助须知:如何正确求助?哪些是违规求助? 4611607
关于积分的说明 14529535
捐赠科研通 4549077
什么是DOI,文献DOI怎么找? 2492697
邀请新用户注册赠送积分活动 1473841
关于科研通互助平台的介绍 1445668