已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oo完成签到,获得积分10
刚刚
AS发布了新的文献求助10
1秒前
一一发布了新的文献求助10
1秒前
2秒前
依米完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
小蘑菇完成签到 ,获得积分10
6秒前
9秒前
9秒前
9秒前
暖冬22完成签到,获得积分10
9秒前
10秒前
打打应助123采纳,获得10
12秒前
NexusExplorer应助AS采纳,获得10
12秒前
皓轩发布了新的文献求助10
16秒前
一一完成签到,获得积分20
18秒前
SUNNYONE完成签到 ,获得积分10
20秒前
某某完成签到 ,获得积分10
20秒前
depicutenhattg完成签到,获得积分10
20秒前
21秒前
21秒前
23秒前
活力天蓝完成签到,获得积分10
23秒前
爆米花应助sanner采纳,获得10
24秒前
HUGGSY发布了新的文献求助30
25秒前
年少丶完成签到,获得积分10
25秒前
廖述祥发布了新的文献求助30
28秒前
灵巧汉堡完成签到 ,获得积分10
28秒前
32秒前
皓轩完成签到 ,获得积分10
35秒前
云岫完成签到 ,获得积分10
36秒前
fufu完成签到 ,获得积分10
36秒前
sanner发布了新的文献求助10
37秒前
CipherSage应助Linda琳采纳,获得10
37秒前
orixero应助xxPcy采纳,获得10
38秒前
42秒前
领导范儿应助愿景采纳,获得10
43秒前
43秒前
43秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723192
求助须知:如何正确求助?哪些是违规求助? 5275071
关于积分的说明 15298251
捐赠科研通 4871863
什么是DOI,文献DOI怎么找? 2616277
邀请新用户注册赠送积分活动 1566075
关于科研通互助平台的介绍 1523006