Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到 ,获得积分10
刚刚
学生白完成签到,获得积分10
1秒前
任白993发布了新的文献求助10
2秒前
YellowStar完成签到,获得积分10
2秒前
Mt完成签到,获得积分10
2秒前
彬墩墩发布了新的文献求助10
2秒前
提拉米苏完成签到 ,获得积分10
3秒前
土拨鼠完成签到,获得积分10
3秒前
进取拼搏完成签到,获得积分10
3秒前
星点点发布了新的文献求助10
3秒前
3秒前
Youngen完成签到,获得积分10
3秒前
春深半夏发布了新的文献求助10
3秒前
4秒前
Leon完成签到,获得积分20
4秒前
save发布了新的文献求助10
5秒前
YellowStar发布了新的文献求助10
5秒前
LIN完成签到 ,获得积分10
5秒前
稳重的雅绿完成签到 ,获得积分10
6秒前
6秒前
linjunqi发布了新的文献求助10
6秒前
6秒前
Hwen完成签到,获得积分10
7秒前
7秒前
飞天三叉戟完成签到,获得积分10
7秒前
你们平时就吃这个啊完成签到,获得积分10
8秒前
Theprisoners应助lihua采纳,获得20
8秒前
于雪晴发布了新的文献求助10
9秒前
hutu发布了新的文献求助10
9秒前
恒河鲤完成签到,获得积分10
9秒前
9秒前
Shanglinqin完成签到,获得积分10
10秒前
dalian完成签到,获得积分10
10秒前
10秒前
自然妙旋完成签到,获得积分10
10秒前
未晞发布了新的文献求助10
10秒前
11秒前
Magali应助飞天三叉戟采纳,获得50
11秒前
一科研土豆完成签到,获得积分10
11秒前
solar@2030发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009325
求助须知:如何正确求助?哪些是违规求助? 3549162
关于积分的说明 11301105
捐赠科研通 3283572
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886205
科研通“疑难数据库(出版商)”最低求助积分说明 811301