亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Efaith发布了新的文献求助10
13秒前
Ania99完成签到 ,获得积分10
31秒前
BowieHuang应助科研通管家采纳,获得10
37秒前
科目三应助科研通管家采纳,获得10
37秒前
44秒前
麦乐迪完成签到 ,获得积分10
52秒前
1分钟前
1分钟前
呜呜吴完成签到,获得积分10
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
自律发布了新的文献求助10
2分钟前
2分钟前
无风风发布了新的文献求助10
3分钟前
3分钟前
李爱国应助白华苍松采纳,获得10
3分钟前
Orange应助韩明佐采纳,获得10
3分钟前
3分钟前
韩明佐发布了新的文献求助10
3分钟前
章鱼完成签到,获得积分10
3分钟前
4分钟前
4分钟前
科研通AI6应助月光采纳,获得10
5分钟前
ahorf关注了科研通微信公众号
5分钟前
5分钟前
5分钟前
ahorf完成签到,获得积分10
5分钟前
5分钟前
月光发布了新的文献求助10
6分钟前
6分钟前
滕皓轩完成签到 ,获得积分10
6分钟前
无花果应助白华苍松采纳,获得10
6分钟前
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
6分钟前
003完成签到,获得积分10
7分钟前
宫戚戚完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590513
求助须知:如何正确求助?哪些是违规求助? 4674789
关于积分的说明 14795291
捐赠科研通 4632598
什么是DOI,文献DOI怎么找? 2532781
邀请新用户注册赠送积分活动 1501293
关于科研通互助平台的介绍 1468687