Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆哥发布了新的文献求助10
2秒前
sunlight应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
简单生活完成签到 ,获得积分10
7秒前
KKKZ发布了新的文献求助10
8秒前
风雨霖霖完成签到 ,获得积分10
9秒前
mark2021完成签到,获得积分10
10秒前
爱你完成签到,获得积分10
11秒前
11秒前
日照金峰完成签到,获得积分10
12秒前
为霜完成签到 ,获得积分10
12秒前
yyd完成签到,获得积分10
16秒前
默默的成危完成签到,获得积分10
17秒前
离笼完成签到,获得积分10
17秒前
颜宇翔完成签到,获得积分10
17秒前
A晨完成签到 ,获得积分10
18秒前
阳光灿烂完成签到,获得积分10
24秒前
liushiyi发布了新的文献求助10
24秒前
Nariy完成签到,获得积分10
25秒前
xzxzxz完成签到,获得积分10
26秒前
27秒前
lizhoukan1完成签到,获得积分10
27秒前
KKKZ完成签到,获得积分10
29秒前
bear完成签到,获得积分10
29秒前
高兴的半仙完成签到,获得积分10
31秒前
litn完成签到 ,获得积分10
32秒前
余长青完成签到 ,获得积分10
32秒前
缥缈白翠完成签到,获得积分20
33秒前
明明完成签到 ,获得积分10
34秒前
Dawn完成签到,获得积分10
34秒前
淡淡的无敌完成签到 ,获得积分10
34秒前
fangang完成签到,获得积分10
35秒前
36秒前
36秒前
37秒前
遇见飞儿完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565256
求助须知:如何正确求助?哪些是违规求助? 4650146
关于积分的说明 14689953
捐赠科研通 4591998
什么是DOI,文献DOI怎么找? 2519428
邀请新用户注册赠送积分活动 1491940
关于科研通互助平台的介绍 1463159