Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鱼游泳教练完成签到,获得积分10
1秒前
3秒前
4秒前
lsrlsr发布了新的文献求助10
4秒前
华仔应助傻傻的雅寒采纳,获得10
5秒前
王蕊发布了新的文献求助10
5秒前
伶俐鹤轩完成签到,获得积分10
6秒前
SciGPT应助杨小鸿采纳,获得10
7秒前
BIGDUCK发布了新的文献求助10
7秒前
王者归来完成签到,获得积分10
8秒前
伶俐鹤轩发布了新的文献求助20
9秒前
zhao完成签到,获得积分10
10秒前
超级手套完成签到,获得积分10
11秒前
Destiny完成签到,获得积分10
12秒前
htt完成签到,获得积分20
13秒前
14秒前
14秒前
jkdzp完成签到 ,获得积分10
14秒前
科研通AI6.1应助欢欢采纳,获得10
14秒前
15秒前
15秒前
17秒前
Itazu完成签到,获得积分10
17秒前
18秒前
公西焱发布了新的文献求助10
18秒前
leemiii完成签到 ,获得积分10
19秒前
20秒前
懦弱的含芙完成签到,获得积分10
21秒前
爱吃瑞士卷完成签到 ,获得积分10
21秒前
nancylan发布了新的文献求助10
21秒前
23秒前
lsrlsr完成签到,获得积分10
23秒前
24秒前
鲤鱼完成签到 ,获得积分10
24秒前
24秒前
25秒前
27秒前
可乐发布了新的文献求助10
27秒前
橙子完成签到 ,获得积分10
29秒前
深井冰发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978