Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
嘉子发布了新的文献求助10
2秒前
2秒前
慕青应助安详的小凝采纳,获得10
3秒前
科研通AI2S应助能干智宸采纳,获得10
3秒前
惠飞薇完成签到 ,获得积分10
3秒前
3秒前
6秒前
超帅远望完成签到,获得积分10
7秒前
火星上雁枫完成签到,获得积分10
7秒前
所所应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
Zx_1993应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
helppppp发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
aa发布了新的文献求助10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得30
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
Zx_1993应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
10秒前
图图应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337