已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-resolution sequence and structure feature extraction for binding site prediction

计算机科学 序列(生物学) 人工智能 卷积神经网络 模式识别(心理学) 特征(语言学) 编码器 编码(内存) 数据挖掘 计算生物学 理论计算机科学 语言学 哲学 遗传学 生物 操作系统
作者
Wenjing Yin,Shudong Wang,Sibo Qiao,Yuanyuan Zhang,Shanchen Pang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108429-108429
标识
DOI:10.1016/j.engappai.2024.108429
摘要

Circular ribonucleic acids (circRNAs) are single-stranded RNA molecules that form loops and are widely expressed in various cells and tissues. They interact with RNA-binding proteins (RBPs) and play a vital regulatory role in the onset and development of several diseases. Researchers have proposed various hybrid architecture prediction methods based on convolutional neural networks and recurrent neural networks to recognize the interactions and sites between circRNAs and RBPs and thus reveal the biological functions of circRNAs. However, existing methods usually ignore the structural information of circRNA, which may affect the modeling of circRNA and RBP binding modes. To address these problems, we propose a prediction model based on multi-resolution feature extraction. First, it generates sequence features using unsupervised word embedding and nucleotide density. Then, it uses implicit and explicit pseudo-secondary structure hybrid encoding to fuse sequence and structural information and better simulate circRNA-RBP binding patterns. Second, it uses an enhanced bidirectional sample convolution and interaction network encoder to capture and integrate high-order features of distinct resolutions from the multi-scale convolution module. This provides rich semantic input to the downstream bidirectional long short-term memory network to improve prediction accuracy. Experimental results on 37 circRNA and 31 linear RNA datasets show that our method has significant advantages in identifying RNA-RBP interactions. Furthermore, the four motifs learned by our method are verified against existing motif databases, indicating that it can discover biologically meaningful circRNA-RBP binding patterns.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
陈咪咪完成签到 ,获得积分10
2秒前
Orange应助cjlinhunu采纳,获得10
2秒前
JeromineJade发布了新的文献求助10
4秒前
酸海椒发布了新的文献求助10
5秒前
Lee发布了新的文献求助10
6秒前
6秒前
情怀应助JaneChen采纳,获得30
7秒前
潇洒的觅柔完成签到,获得积分10
8秒前
Mic应助舒服的水壶采纳,获得10
9秒前
嘻嘻发布了新的文献求助10
10秒前
10秒前
10秒前
微风完成签到 ,获得积分10
10秒前
11秒前
13秒前
ww417发布了新的文献求助10
14秒前
14秒前
14秒前
科研通AI6.1应助gndd采纳,获得30
15秒前
斯文败类应助诚心文博采纳,获得10
16秒前
皮代谷发布了新的文献求助10
16秒前
16秒前
17秒前
456244yyy发布了新的文献求助10
19秒前
大模型应助攀登采纳,获得30
19秒前
cjlinhunu发布了新的文献求助10
22秒前
NexusExplorer应助wsw111采纳,获得10
22秒前
22秒前
22秒前
JaneChen发布了新的文献求助30
23秒前
田様应助皮代谷采纳,获得10
24秒前
25秒前
东方欲晓关注了科研通微信公众号
28秒前
28秒前
柒_l发布了新的文献求助10
30秒前
科研通AI6.1应助29采纳,获得10
30秒前
孙皓阳发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771671
求助须知:如何正确求助?哪些是违规求助? 5593024
关于积分的说明 15428138
捐赠科研通 4904964
什么是DOI,文献DOI怎么找? 2639092
邀请新用户注册赠送积分活动 1586960
关于科研通互助平台的介绍 1541911