Assembly of short amphiphilic peptoids into nanohelices with controllable supramolecular chirality

超分子手性 超分子化学 扁桃体 手性(物理) 两亲性 侧链 纳米技术 超分子组装 自组装 化学 材料科学 组合化学 聚合物 分子 共聚物 有机化学 生物化学 物理 手征对称破缺 量子力学 Nambu–Jona Lasinio模型 夸克
作者
Renyu Zheng,Mingfei Zhao,Jingshan S. Du,Tarunya Rao Sudarshan,Yicheng Zhou,Anant K. Paravastu,James J. De Yoreo,Andrew L. Ferguson,Chun‐Long Chen
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:3
标识
DOI:10.1038/s41467-024-46839-y
摘要

Abstract A long-standing challenge in bioinspired materials is to design and synthesize synthetic materials that mimic the sophisticated structures and functions of natural biomaterials, such as helical protein assemblies that are important in biological systems. Herein, we report the formation of a series of nanohelices from a type of well-developed protein-mimetics called peptoids. We demonstrate that nanohelix structures and supramolecular chirality can be well-controlled through the side-chain chemistry. Specifically, the ionic effects on peptoids from varying the polar side-chain groups result in the formation of either single helical fiber or hierarchically stacked helical bundles. We also demonstrate that the supramolecular chirality of assembled peptoid helices can be controlled by modifying assembling peptoids with a single chiral amino acid side chain. Computational simulations and theoretical modeling predict that minimizing exposure of hydrophobic domains within a twisted helical form presents the most thermodynamically favorable packing of these amphiphilic peptoids and suggests a key role for both polar and hydrophobic domains on nanohelix formation. Our findings establish a platform to design and synthesize chiral functional materials using sequence-defined synthetic polymers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适逊完成签到 ,获得积分10
刚刚
科研通AI5应助11111采纳,获得10
1秒前
CipherSage应助hxn采纳,获得10
1秒前
3秒前
深情安青应助shatang采纳,获得10
3秒前
zxx5012发布了新的文献求助10
3秒前
芥丶子完成签到,获得积分10
4秒前
曾开心完成签到,获得积分10
4秒前
平淡南霜发布了新的文献求助10
4秒前
Blue_Pig发布了新的文献求助10
5秒前
李健的小迷弟应助逐风采纳,获得30
5秒前
yatou5651发布了新的文献求助10
6秒前
Akim应助和谐乌龟采纳,获得10
6秒前
peng完成签到,获得积分20
7秒前
CipherSage应助汉关采纳,获得10
7秒前
8秒前
8秒前
8秒前
丘比特应助XM采纳,获得10
8秒前
bkagyin应助Blue_Pig采纳,获得10
9秒前
10秒前
11秒前
11秒前
完美世界应助加油加油采纳,获得10
12秒前
12秒前
13秒前
ns发布了新的文献求助30
15秒前
11111发布了新的文献求助10
15秒前
16秒前
药学牛马完成签到,获得积分10
16秒前
张zi发布了新的文献求助10
17秒前
yatou5651发布了新的文献求助10
18秒前
18秒前
小魏不学无术完成签到,获得积分10
18秒前
木棉发布了新的文献求助10
18秒前
A1234发布了新的文献求助10
19秒前
英俊的铭应助弄井采纳,获得30
19秒前
小二郎应助Dean采纳,获得10
20秒前
故意的冰淇淋完成签到 ,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808