亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nb2O5 memristive neurons‐based unsupervised learning network

记忆电阻器 神经形态工程学 人工神经网络 计算机科学 人工智能 振荡(细胞信号) 电容 模式识别(心理学) 无监督学习 尖峰神经网络 电子工程 工程类 物理 电极 量子力学 生物 遗传学
作者
Zhenzhou Lu,Qian Zhu,Shuyu Shi,Kangtai Wang,Yan Liang
出处
期刊:International Journal of Circuit Theory and Applications [Wiley]
卷期号:52 (11): 5554-5571 被引量:3
标识
DOI:10.1002/cta.4044
摘要

Summary Memristors exhibit potential applications in neuromorphic computing, because of their nanoscale and low power. Non‐volatile passive memristors usually behave as electronic synapses, while volatile locally active memristors can be used to construct artificial neurons. In this paper, we apply an Nb 2 O 5 locally active memristor with the parasitic capacitance as a LIF neuron and analyze the possibility of generating spiking oscillations by the neuron through small signal equivalent circuits and the Hopf bifurcation method. By combining Nb 2 O 5 memristive neurons with the voltage‐controlled non‐volatile memristive synapses, we construct an unsupervised learning network and classify 5 × 3 letter images and 5 × 5 number images. In particular, before building the hardware circuit, we predict the training time, recognition time, and recognition accuracy of the pattern recognition network through theoretical analysis, which guides the actual circuit experiment. Specifically, the training time of the network is related to the synaptic memristor resistance change rate, the recognition time of the network is related to the oscillation period of the Nb 2 O 5 memristor, and whether the network can work properly is related to the parameters of Nb 2 O 5 memristor and NMOS. The LTspice simulation results manifest that the proposed circuit can recognize different patterns and can be applied to the neural morphological system of pattern recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助hoinyes采纳,获得10
9秒前
15秒前
40秒前
46秒前
tree完成签到 ,获得积分10
54秒前
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
梦幻征途完成签到,获得积分10
2分钟前
2分钟前
梦幻征途发布了新的文献求助10
2分钟前
qing_li完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
白熊完成签到 ,获得积分10
3分钟前
3分钟前
烟花应助zhb123采纳,获得10
3分钟前
3分钟前
zhb123发布了新的文献求助10
3分钟前
舒心聪展发布了新的文献求助10
3分钟前
zhb123完成签到,获得积分10
4分钟前
bkagyin应助贝加尔湖畔采纳,获得10
4分钟前
fdwang完成签到 ,获得积分10
4分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得30
5分钟前
语物完成签到,获得积分10
5分钟前
水刃木完成签到,获得积分10
5分钟前
Zgrey完成签到 ,获得积分10
5分钟前
5分钟前
YU完成签到 ,获得积分10
5分钟前
5分钟前
六六发布了新的文献求助20
5分钟前
汉堡包应助yhw采纳,获得10
6分钟前
yimomo完成签到,获得积分10
6分钟前
6分钟前
打打应助yimomo采纳,获得10
6分钟前
霞霞子完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681583
求助须知:如何正确求助?哪些是违规求助? 5010277
关于积分的说明 15175826
捐赠科研通 4841086
什么是DOI,文献DOI怎么找? 2594918
邀请新用户注册赠送积分活动 1547912
关于科研通互助平台的介绍 1505927