🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

Bi-Directional Ensemble Feature Reconstruction Network for Few-Shot Fine-Grained Classification

判别式 计算机科学 人工智能 班级(哲学) 模式识别(心理学) 集合(抽象数据类型) 机器学习 特征(语言学) 公制(单位) 一次性 特征提取 构造(python库) 数据挖掘 机械工程 哲学 语言学 运营管理 经济 程序设计语言 工程类
作者
Jijie Wu,Dongliang Chang,Aneeshan Sain,Xiaoxu Li,Zhanyu Ma,Jie Cao,Jun Guo,Yi-Zhe Song
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (9): 6082-6096 被引量:2
标识
DOI:10.1109/tpami.2024.3376686
摘要

The main challenge for fine-grained few-shot image classification is to learn feature representations with higher inter-class and lower intra-class variations, with a mere few labelled samples. Conventional few-shot learning methods however cannot be naively adopted for this fine-grained setting – a quick pilot study reveals that they in fact push for the opposite (i.e., lower inter-class variations and higher intra-class variations). To alleviate this problem, prior works predominately use a support set to reconstruct the query image and then utilize metric learning to determine its category. Upon careful inspection, we further reveal that such unidirectional reconstruction methods only help to increase inter-class variations and are not effective in tackling intra-class variations. In this paper, we introduce a bi-reconstruction mechanism that can simultaneously accommodate for inter-class and intra-class variations. In addition to using the support set to reconstruct the query set for increasing inter-class variations, we further use the query set to reconstruct the support set for reducing intra-class variations. This design effectively helps the model to explore more subtle and discriminative features which is key for the fine-grained problem in hand. Furthermore, we also construct a self-reconstruction module to work alongside the bi-directional module to make the features even more discriminative. We introduce the snapshot ensemble method in the episodic learning strategy – a simple trick to further improve model performance without increasing training costs. Experimental results on three widely used fine-grained image classification datasets, as well as general and cross-domain few-shot image datasets, consistently show considerable improvements compared with other methods. Codes are available at https://github.com/PRIS-CV/BiEN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铁甲小杨完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
乐乐完成签到,获得积分20
3秒前
3秒前
科研通AI5应助酷炫的虔纹采纳,获得10
4秒前
5秒前
hkh完成签到,获得积分10
6秒前
Jinnel发布了新的文献求助10
7秒前
潇潇完成签到 ,获得积分10
7秒前
小胜完成签到 ,获得积分10
8秒前
Zoe发布了新的文献求助10
8秒前
aq22完成签到 ,获得积分10
9秒前
wzhang发布了新的文献求助10
9秒前
银杏完成签到,获得积分10
9秒前
洁净之柔完成签到,获得积分10
9秒前
11秒前
传奇3应助高高的大地采纳,获得10
13秒前
科研通AI5应助苦咖啡采纳,获得30
13秒前
xx发布了新的文献求助10
15秒前
16秒前
LYZ完成签到,获得积分10
17秒前
ggbond完成签到 ,获得积分10
19秒前
gcc发布了新的文献求助10
21秒前
Jinnel完成签到,获得积分10
21秒前
心心完成签到 ,获得积分10
22秒前
寒战完成签到 ,获得积分10
22秒前
24秒前
坚定的草丛完成签到,获得积分10
24秒前
leotao完成签到,获得积分10
24秒前
ajun完成签到,获得积分10
24秒前
Zoe完成签到,获得积分20
24秒前
Grayball应助xx采纳,获得10
29秒前
逝者如斯只是看着完成签到,获得积分10
30秒前
帅男完成签到,获得积分10
33秒前
重要铃铛完成签到 ,获得积分10
34秒前
37秒前
小于爱科研完成签到,获得积分10
38秒前
谨慎鹏涛完成签到 ,获得积分10
40秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600569
求助须知:如何正确求助?哪些是违规求助? 3169468
关于积分的说明 9561319
捐赠科研通 2875832
什么是DOI,文献DOI怎么找? 1579069
邀请新用户注册赠送积分活动 742364
科研通“疑难数据库(出版商)”最低求助积分说明 725248