The Expansion Methods of Inception and Its Application

计算机科学
作者
Cuiping Shi,Zhenquan Liu,Jiageng Qu,Youwen Deng
出处
期刊:Symmetry [MDPI AG]
卷期号:16 (4): 494-494
标识
DOI:10.3390/sym16040494
摘要

In recent years, with the rapid development of deep learning technology, a large number of excellent convolutional neural networks (CNNs) have been proposed, many of which are based on improvements to classical methods. Based on the Inception family of methods, depthwise separable convolution was applied to Xception to achieve lightweighting, and Inception-ResNet introduces residual connections to accelerate model convergence. However, existing improvements for the Inception module often neglect further enhancement of its receptive field, while increasing the receptive field of CNNs has been widely studied and proven to be effective in improving classification performance. Motivated by this fact, three effective expansion modules are proposed in this paper. The first expansion module, Inception expand (Inception-e) module, is proposed to improve the classification accuracy by concatenating more and deeper convolutional branches. To reduce the number of parameters for Inception e, this paper proposes a second expansion module—Equivalent Inception-e (Eception) module, which is equivalent to Inception-e in terms of feature extraction capability, but which suppresses the growth of the parameter quantity brought by the expansion by effectively reducing the redundant convolutional layers; on the basis of Eception, this paper proposes a third expansion module—Lightweight Eception (Lception) module, which crosses depthwise convolution with ordinary convolution to further effectively reduce the number of parameters. The three proposed modules have been validated on the Cifar10 dataset. The experimental results show that all these extensions are effective in improving the classification accuracy of the models, and the most significant effect is the Lception module, where Lception (rank = 4) on the Cifar10 dataset improves the accuracy by 1.5% compared to the baseline model (Inception module A) by using only 0.15 M more parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程程发布了新的文献求助10
刚刚
鲤鱼鸽子完成签到,获得积分10
1秒前
wonder041应助咸鱼咸采纳,获得10
2秒前
2秒前
章半雪完成签到,获得积分10
3秒前
玛莎机完成签到,获得积分20
3秒前
馀翀发布了新的文献求助10
3秒前
3秒前
3秒前
Jerry完成签到,获得积分20
4秒前
word麻鸭完成签到 ,获得积分10
5秒前
Freja发布了新的文献求助10
5秒前
6秒前
8秒前
8秒前
8秒前
婷婷婷完成签到 ,获得积分10
8秒前
妩媚的初晴完成签到,获得积分10
8秒前
9秒前
梅溪湖的提词器完成签到,获得积分10
10秒前
Nicole完成签到 ,获得积分10
10秒前
平常馒头完成签到 ,获得积分10
10秒前
脑洞疼应助葫芦家二娃采纳,获得10
11秒前
ark861023发布了新的文献求助10
11秒前
12秒前
纥江完成签到,获得积分10
13秒前
科研通AI5应助gu采纳,获得10
13秒前
成就雨筠应助科研通管家采纳,获得10
15秒前
苏卿应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Zn应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
罗_应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得30
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得10
16秒前
成就雨筠应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557769
求助须知:如何正确求助?哪些是违规求助? 3132881
关于积分的说明 9399652
捐赠科研通 2832982
什么是DOI,文献DOI怎么找? 1557202
邀请新用户注册赠送积分活动 727132
科研通“疑难数据库(出版商)”最低求助积分说明 716197