Intelligent fault diagnosis methods for hydraulic components based on information fusion: review and prospects

信息融合 断层(地质) 融合 计算机科学 可靠性工程 人工智能 工程类 系统工程 地质学 哲学 语言学 地震学
作者
Hanlin Guan,Yan Ren,Hesheng Tang,Jiawei Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad437e
摘要

Abstract Hydraulic component faults have the characteristics of nonlinear time-varying signal, strong concealment, and difficult feature extraction, etc. Timely and accurately fault diagnosis of hydraulic components is helpful to curb economic losses and accidents, so researches have carried out a lot of research on hydraulic components. Information fusion technology can combine multi-source data from multiple dimensions to mine fault data characteristics, which effectively improves the accuracy and reliability of fault diagnosis results. However, there is currently a lack of a comprehensive and systematic review in this domain. Therefore, in this paper, the hydraulic components information fusion fault diagnosis technologies are summarized and analyzed, including the main process information fusion fault diagnosis and the research status of information fusion fault diagnosis of hydraulic system. The methods and techniques involved in the fusion process, data source and fusion method of fault diagnosis of hydraulic components information fusion are described and summarized. The problems of information fusion in fault diagnosis of hydraulic components are analyzed, the solutions are discussed, and the research ideas of improving information fusion fault diagnosis are put forward. Finally, digital twin technology is introduced, and the advantages and research status of intelligent fault diagnosis based on digital twin are summarized. On this basis, the intelligent fault diagnosis of hydraulic components based on information fusion is summarized, and the challenges and future research ideas of applying information fusion and digital twin to intelligent fault diagnosis of hydraulic components are put forward and analyzed comprehensively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
咸鱼一号完成签到,获得积分10
刚刚
刚刚
韭菜盒子发布了新的文献求助10
刚刚
刚刚
完美的以寒完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
SGOM发布了新的文献求助10
4秒前
黄大师完成签到,获得积分10
4秒前
小鱼发布了新的文献求助10
4秒前
贰陆发布了新的文献求助10
5秒前
KhalilHao发布了新的文献求助10
5秒前
秀丽钢笔发布了新的文献求助10
5秒前
luna发布了新的文献求助400
6秒前
英姑应助韭菜盒子采纳,获得10
6秒前
Tieaciaa完成签到,获得积分10
6秒前
zhang1完成签到,获得积分10
7秒前
shelter完成签到 ,获得积分10
7秒前
满眼月月发布了新的文献求助10
7秒前
aimee发布了新的文献求助10
7秒前
8秒前
ayu发布了新的文献求助10
8秒前
积极慕梅应助铲屎官采纳,获得10
8秒前
守护最好的坤坤完成签到,获得积分10
8秒前
10秒前
江峰发布了新的文献求助10
11秒前
情怀应助贼肉采纳,获得10
11秒前
小丘2024发布了新的文献求助30
12秒前
12秒前
zhang1发布了新的文献求助10
13秒前
jdz完成签到 ,获得积分10
13秒前
上官若男应助大力金针菇采纳,获得10
14秒前
14秒前
14秒前
不安青牛应助Brill采纳,获得10
15秒前
15秒前
15秒前
Tieaciaa发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721