Highly conductive carbon nanotubes-boron nitride-thermoplastic polyurethane composite thin films with ultra broadband and efficient electromagnetic interference shielding up to 110 GHz and heat dissipation abilities

材料科学 氮化硼 电磁屏蔽 复合材料 复合数 导电体 电磁干扰 电子设备和系统的热管理 宽带 石墨烯 氮化物 消散 纳米技术 电子工程 图层(电子) 机械工程 光学 化学 物理 有机化学 工程类 热力学
作者
Quy-Dat Nguyen,Yoonsik Yi,Choon‐Gi Choi
出处
期刊:Materials Today Physics [Elsevier]
卷期号:44: 101430-101430 被引量:2
标识
DOI:10.1016/j.mtphys.2024.101430
摘要

The miniaturization and integration of electronic devices have led to an increased accumulation of heat, which can disrupt normal functioning. Their functionalities are also severely affected when they are exposed to the abundant electromagnetic interference (EMI) resulting from the rapid development of fifth-generation telecommunication technology extended to mmWaves and sixth-generation telecommunication frequencies up to 110 GHz. Therefore, it is urgent to develop composite materials with excellent EMI shielding effectiveness and heat dissipation abilities. Herein, we have fabricated an all-in-one thin film composite using carbon nanotubes (CNT), boron nitride (BN), and thermoplastic polyurethane (TPU) through a layer-by-layer casting method to create a composite supported by hydrogen bonding with impressive EMI shielding and heat dissipation properties. The high electrical conductivity of the CNT-BN-TPU composite resulted in the highest EMI shielding effectiveness, ranging from 90.66 dB in Ka-band to 79.8 dB in W-band, at a thickness of 100 μm, with absorption efficiency of 83.07% at 34 GHz and 80.85% at 100 GHz, respectively. The composite demonstrated excellent heat dissipation, thanks to its outstanding out-of-plane thermal conductivity, which reached 1.971 W/mK. We believe that our proposed method for producing an all-in-one composite thin film with excellent EMI shielding and thermal management capabilities could be a useful approach for the next generation of smart electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bilipear发布了新的文献求助10
1秒前
2秒前
3秒前
tier3完成签到,获得积分10
5秒前
HCLonely应助冷傲的迎南采纳,获得10
5秒前
pluto应助AAA郭哥汽修采纳,获得10
6秒前
cyrong发布了新的文献求助10
6秒前
9秒前
领导范儿应助越幸运采纳,获得10
10秒前
张瀚文完成签到,获得积分10
11秒前
Hello应助xiehexin采纳,获得20
11秒前
lin发布了新的文献求助10
12秒前
道友且慢完成签到,获得积分10
12秒前
13秒前
lily完成签到,获得积分10
13秒前
Hello应助朱瑶君采纳,获得10
13秒前
冷傲山彤发布了新的文献求助10
14秒前
16秒前
田様应助简简单单采纳,获得10
16秒前
lily发布了新的文献求助10
18秒前
瑾瑾完成签到,获得积分10
19秒前
Friday发布了新的文献求助10
19秒前
iFaceDOG关注了科研通微信公众号
20秒前
独特的友琴完成签到 ,获得积分10
21秒前
22秒前
小研发布了新的文献求助10
23秒前
小马完成签到,获得积分10
23秒前
羞涩的念寒完成签到,获得积分20
24秒前
24秒前
爆米花应助xiehexin采纳,获得10
24秒前
冷傲芷雪完成签到 ,获得积分10
25秒前
27秒前
jackwang完成签到,获得积分10
28秒前
贺豪完成签到 ,获得积分10
29秒前
皇额娘她推了熹娘娘完成签到 ,获得积分10
29秒前
脑洞疼应助小研采纳,获得10
29秒前
朱瑶君发布了新的文献求助10
29秒前
ferrycake应助阿伦艾弗森采纳,获得20
30秒前
吴昊发布了新的文献求助10
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283