Dynamic multi-graph neural network for traffic flow prediction incorporating traffic accidents

计算机科学 邻接矩阵 智能交通系统 流量(计算机网络) 数据挖掘 图形 人工神经网络 交通生成模型 机器学习 人工智能 实时计算 理论计算机科学 土木工程 计算机安全 工程类
作者
Yaqin Ye,Yue Xiao,Yuxuan Zhou,Shengwen Li,Yuanfei Zang,Yixuan Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121101-121101 被引量:9
标识
DOI:10.1016/j.eswa.2023.121101
摘要

Traffic flow forecasting is the foundation of intelligent transportation development and an important task in realizing intelligent transportation services. This task is challenging due to the complex spatiotemporal dependencies between road nodes and some other external factors. Most existing GCN-based methods usually use a single and fixed adjacency matrix to characterize the global spatiotemporal relationship of road networks, which limits the expressiveness of the model in different scenarios and ignores the dynamic nature of node relationships that change over time. In addition, sudden traffic accidents may also cause fluctuations in traffic flow in the short term, which may affect the accuracy of the model prediction. To address the above problems, this paper proposes a dynamic multi-graph neural network (DMGNN) incorporating traffic accidents for multi-step traffic flow prediction. First, to provide richer prior knowledge for the model, we construct multiple graphs to represent various contextual dependencies among nodes. Second, we designed a dynamic graph adjustment module to update the adjacency matrix used in each training step. Finally, we build a deep learning framework based on GAT and Bi-LSTM to focus on local fluctuations caused by traffic incidents and to extract sophisticated spatiotemporal correlations between data. We conducted extensive experiments on two real traffic datasets to evaluate the model, and the ablation experiments verified the effectiveness of each module. On the standard public dataset PEMSD3, compared to the optimal baseline model, our model improves the RMSE, MAE, and MAPE of the multi-step prediction by about 21%, 21%, and 22%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
七个丸子发布了新的文献求助30
2秒前
Lucas应助愉快凡旋采纳,获得10
3秒前
5秒前
刘壮实完成签到,获得积分10
5秒前
yz123完成签到,获得积分10
7秒前
7秒前
小二郎应助动人的念波采纳,获得10
9秒前
zhangruiii发布了新的文献求助10
10秒前
yang完成签到,获得积分10
11秒前
呉冥11应助yuaasusanaann采纳,获得10
12秒前
求知若渴完成签到,获得积分0
14秒前
七个丸子完成签到,获得积分10
15秒前
yang发布了新的文献求助10
16秒前
虚幻芷文完成签到,获得积分10
16秒前
17秒前
17秒前
zying完成签到,获得积分20
19秒前
甜美的成败完成签到,获得积分10
20秒前
Simmer发布了新的文献求助10
22秒前
Hui完成签到,获得积分20
23秒前
Llt完成签到,获得积分10
27秒前
28秒前
研友_Y59785应助Simmer采纳,获得10
29秒前
ttt完成签到,获得积分10
29秒前
成就觅翠完成签到,获得积分10
32秒前
33秒前
顾矜应助刘小小123采纳,获得10
33秒前
愉快凡旋完成签到,获得积分20
33秒前
小蘑菇应助雷培采纳,获得10
33秒前
34秒前
共享精神应助AAAA采纳,获得10
34秒前
西门妙晴发布了新的文献求助10
35秒前
kw完成签到 ,获得积分10
36秒前
早点睡吧完成签到,获得积分10
37秒前
訫藍发布了新的文献求助20
37秒前
崔宁宁完成签到 ,获得积分10
37秒前
hms发布了新的文献求助10
38秒前
闲听花落完成签到 ,获得积分10
38秒前
聪明的哈密瓜完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997537
求助须知:如何正确求助?哪些是违规求助? 3537062
关于积分的说明 11270787
捐赠科研通 3276299
什么是DOI,文献DOI怎么找? 1806863
邀请新用户注册赠送积分活动 883554
科研通“疑难数据库(出版商)”最低求助积分说明 809975