Combined Estimation of Vehicle Dynamic State and Inertial Parameter for Electric Vehicles Based on Dual Central Difference Kalman Filter Method

控制理论(社会学) 卡西姆 卡尔曼滤波器 工程类 车辆动力学 扩展卡尔曼滤波器 惯性参考系 可观测性 惯性测量装置 计算机科学 汽车工程 数学 航空航天工程 物理 控制(管理) 量子力学 人工智能 应用数学
作者
Xianjian Jin,Junpeng Yang,Liwei Xu,Chongfeng Wei,Zhaoran Wang,Guodong Yin
出处
期刊:Chinese journal of mechanical engineering [Elsevier]
卷期号:36 (1) 被引量:8
标识
DOI:10.1186/s10033-023-00914-5
摘要

Abstract Distributed drive electric vehicles (DDEVs) possess great advantages in the viewpoint of fuel consumption, environment protection and traffic mobility. Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size, and inertial parameter has seldom been tackled and systematically estimated. This paper presents a dual central difference Kalman filter (DCDKF) where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters, such as vehicle sideslip angle, vehicle mass, vehicle yaw moment of inertia, the distance from the front axle to centre of gravity. The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs. The four-wheel nonlinear vehicle dynamics estimation model considering payload variations, Pacejka tire model, wheel and motor dynamics model is developed, the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory. To address system nonlinearities in vehicle dynamics estimation, the DCDKF and dual extended Kalman filter (DEKF) are also investigated and compared. Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-Carsim ® . The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions . This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xk16发布了新的文献求助10
刚刚
1秒前
羊羽完成签到,获得积分10
1秒前
Yina完成签到 ,获得积分10
4秒前
4秒前
5秒前
JAJ发布了新的文献求助10
5秒前
柒月流火发布了新的文献求助10
5秒前
5秒前
七慕凉完成签到,获得积分10
5秒前
httcyx发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
地平完成签到,获得积分10
8秒前
Xiao完成签到,获得积分10
8秒前
zbq完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
9秒前
明理芾完成签到,获得积分20
9秒前
liyi完成签到,获得积分20
10秒前
11秒前
11秒前
打打应助a均采纳,获得10
11秒前
11秒前
寒冷天亦完成签到,获得积分20
12秒前
无花果应助茹茹采纳,获得10
12秒前
huco发布了新的文献求助10
12秒前
12秒前
SYLH应助QhL采纳,获得10
13秒前
science应助QhL采纳,获得20
13秒前
13秒前
13秒前
14秒前
明理芾发布了新的文献求助10
14秒前
咕嘟A发布了新的文献求助10
14秒前
余一台完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483356
求助须知:如何正确求助?哪些是违规求助? 3072736
关于积分的说明 9127609
捐赠科研通 2764309
什么是DOI,文献DOI怎么找? 1517091
邀请新用户注册赠送积分活动 701898
科研通“疑难数据库(出版商)”最低求助积分说明 700770