Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook

计算机科学 数据科学 时态数据库 分类 数据挖掘 时间序列 领域(数学分析) 数据类型 钥匙(锁) 人工智能 机器学习 数学分析 数学 程序设计语言 计算机安全
作者
Ming Jin,Qingsong Wen,Yuxuan Liang,Chaoli Zhang,Siqiao Xue,Handong Wang,James Zhang,Xun Hu,Haifeng Chen,Xiaoli Li,Shirui Pan,Vincent S. Tseng,Yu Zheng,Lei Chen,Hui Xiong
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2310.10196
摘要

Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Abdurrahman完成签到,获得积分10
1秒前
11128完成签到 ,获得积分10
2秒前
彭于晏应助王金金采纳,获得10
2秒前
ryt完成签到,获得积分20
2秒前
2秒前
烟花应助白元正采纳,获得10
4秒前
zhangjw完成签到 ,获得积分10
5秒前
5秒前
乐观寻绿完成签到,获得积分10
7秒前
PEX发布了新的文献求助10
8秒前
夏昼苦长完成签到,获得积分10
8秒前
开心potato完成签到 ,获得积分20
9秒前
zqj完成签到,获得积分10
12秒前
xw完成签到,获得积分10
12秒前
夏昼苦长发布了新的文献求助10
12秒前
13秒前
时尚语梦完成签到 ,获得积分10
14秒前
14秒前
光亮小笼包完成签到 ,获得积分10
15秒前
橙橙完成签到,获得积分10
15秒前
丰盛的煎饼应助zqj采纳,获得10
18秒前
娜是一阵风完成签到 ,获得积分10
18秒前
18秒前
linzy完成签到,获得积分10
18秒前
轻轻完成签到 ,获得积分10
19秒前
可爱的函函应助Only采纳,获得10
19秒前
家向松完成签到,获得积分10
19秒前
烷基八氮完成签到,获得积分10
19秒前
风趣访卉完成签到,获得积分10
19秒前
曾经的听云完成签到 ,获得积分10
20秒前
123完成签到,获得积分10
20秒前
行萱完成签到 ,获得积分10
21秒前
劳资懒得起网名完成签到,获得积分10
22秒前
zpp完成签到 ,获得积分10
24秒前
笑、完成签到,获得积分10
24秒前
科小白完成签到 ,获得积分10
25秒前
Mannone完成签到 ,获得积分10
25秒前
机智的皮皮虾完成签到,获得积分10
25秒前
矮小的茹妖完成签到 ,获得积分10
26秒前
zhaoman完成签到,获得积分10
27秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056768
求助须知:如何正确求助?哪些是违规求助? 2713310
关于积分的说明 7435391
捐赠科研通 2358319
什么是DOI,文献DOI怎么找? 1249367
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596259