清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A-242 Integrating Respiratory Metagenomics and Metatranscriptomics for Diagnosis of Lung Cancer and Infection in Patients with Pulmonary Diseases

肺癌 支气管肺泡灌洗 基因组 肺炎 肺结核 医学 癌症 鉴别诊断 内科学 生物 免疫学 病理 基因 生物化学
作者
Dai Hoon Han,Fei Yu,Yuxiao Chen
出处
期刊:Clinical Chemistry [Oxford University Press]
卷期号:69 (Supplement_1)
标识
DOI:10.1093/clinchem/hvad097.214
摘要

Abstract Background Advances in unbiased metagenomic next generation sequencing (mNGS) technologies have enabled the study of microbial and host genetic material (DNA and RNA) in one test. In this study, we aimed to develop machine learning-based differential diagnostic models (MLBDDMs) using the metagenomic and human transcriptomic data generated by an affordable bronchoalveolar lavage fluid (BLAF) mNGS assay and investigated their clinical utility for early differential diagnosis of lung cancer and pulmonary infection in patients with pulmonary diseases. Methods We recruited 775 patients with respiratory disease, including 160 pathologically diagnosed lung cancer and clinically diagnosed 615 infectious causes (131 tuberculosis, 172 fungal pneumonia and 312 bacterial pneumonia). An affordable mNGS assay on BALF samples collected from these patients on admission were performed. Using the generated mNGS data, we compared the differences in microbial diversity and host gene expression between lung cancer patients and pulmonary infection patients. The BLAF mNGS datasets of lung cancer group and each infection group were then randomly divided into a training dataset and a validation dataset at a ratio of approximately 3:1 for developing optimal MLBDDMs that can be used to distinguish lung cancer from various pulmonary infections. Results By comparing the BALF mNGS data of lung cancer (n = 160) and pulmonary infection (n = 615), we found that the infection group had higher microbial diversity than lung cancer group (P-value < 0.05). Respiratory colonizing microorganisms (e.g., Corynebacterium propinquum and Bacteroides uniformis) and pathogen (Mycobacterium tuberculosis and Cryptococcus neoformans) were found as differential microbes (adjusted p-value < 0.05, LDA score > 2). From BALF gene expression data, we detected 175 genes enriched in NOD-like receptor signaling pathway and chemokine signaling pathway differentially expressed between lung cancer and pulmonary infection groups (False Discovery Rate, FDR < 0.05). Cell composition analysis revealed that macrophage M1 was higher in lung infection group (P-value < 0.001), whereas mast cell activated and DCs activated were higher in lung cancer group (P-value < 0.001, P-value = 0.016). We integrated the metagenomic (microbial composition and human copy number variation) and transcriptomic data (host differentially expressed genes and cell composition) generated by the BALF mNGS assay with eleven machine learning classifiers to establish diagnosis models for distinguishing lung cancer from pulmonary infection (we named LC/PI model). The results showed that a Random Forest diagnostic model (the RF-LC/PI model) had optimal performance, with a sensitivity and specificity of 86.7% and 87.8%, respectively, in distinguishing lung cancer from pulmonary infection (area under the receiver operating characteristic curve [AUC] = 0.838 in the training dataset; AUC = 0.79 in a held-out validation dataset). Similar to the establishment of the LC/PI model, we further developed three diagnostic models for distinguishing lung cancer and tuberculosis (LC/TB model), lung cancer and fungal pneumonia (LC/FP model), and lung cancer and bacterial pneumonia (LC/BP model), respectively. The AUC of these three models were 0.91, 0.88, 0.91, respectively, showing a high differential diagnosis accuracy. Conclusions We have established MLBDDMs using BALF metagenomic and metatranscriptomic data and achieved superior accuracy for differentiating lung cancer and pulmonary infections, which could promote early diagnosis of pulmonary diseases and benefit more patients with one test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlwang发布了新的文献求助10
刚刚
naczx完成签到,获得积分10
17秒前
风秋杨完成签到 ,获得积分10
19秒前
亮总完成签到 ,获得积分10
25秒前
sherry完成签到 ,获得积分10
29秒前
潇洒的语蝶完成签到 ,获得积分10
34秒前
海鹏完成签到 ,获得积分10
36秒前
一白完成签到 ,获得积分10
46秒前
井小浩完成签到 ,获得积分10
1分钟前
乐正怡完成签到 ,获得积分10
1分钟前
领导范儿应助xun采纳,获得10
1分钟前
玉汝于成完成签到 ,获得积分10
1分钟前
mochalv123完成签到 ,获得积分10
1分钟前
姚芭蕉完成签到 ,获得积分0
1分钟前
数乱了梨花完成签到 ,获得积分10
1分钟前
Hiaoliem完成签到 ,获得积分10
1分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
空曲完成签到 ,获得积分10
2分钟前
棉花糖猫弦完成签到 ,获得积分0
2分钟前
终究是残念完成签到,获得积分10
2分钟前
2分钟前
biancaliu发布了新的文献求助10
2分钟前
J陆lululu完成签到 ,获得积分10
3分钟前
herpes完成签到 ,获得积分0
3分钟前
77完成签到 ,获得积分10
3分钟前
solo完成签到,获得积分10
3分钟前
大水完成签到 ,获得积分10
3分钟前
biancaliu完成签到,获得积分10
3分钟前
科目三应助solo采纳,获得10
3分钟前
雪妮完成签到 ,获得积分10
3分钟前
4分钟前
小贾爱喝冰美式完成签到 ,获得积分10
4分钟前
lielizabeth完成签到 ,获得积分0
4分钟前
Biom完成签到 ,获得积分10
4分钟前
郜南烟发布了新的文献求助10
4分钟前
lili完成签到 ,获得积分10
4分钟前
李健鹏完成签到 ,获得积分10
4分钟前
顾矜应助郜南烟采纳,获得10
4分钟前
火星上惜天完成签到 ,获得积分10
4分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146832
求助须知:如何正确求助?哪些是违规求助? 2798126
关于积分的说明 7826730
捐赠科研通 2454695
什么是DOI,文献DOI怎么找? 1306428
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565