亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A-242 Integrating Respiratory Metagenomics and Metatranscriptomics for Diagnosis of Lung Cancer and Infection in Patients with Pulmonary Diseases

肺癌 支气管肺泡灌洗 基因组 肺炎 肺结核 医学 癌症 鉴别诊断 内科学 生物 免疫学 病理 基因 生物化学
作者
Dai Hoon Han,Fei Yu,Yuxiao Chen
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:69 (Supplement_1)
标识
DOI:10.1093/clinchem/hvad097.214
摘要

Abstract Background Advances in unbiased metagenomic next generation sequencing (mNGS) technologies have enabled the study of microbial and host genetic material (DNA and RNA) in one test. In this study, we aimed to develop machine learning-based differential diagnostic models (MLBDDMs) using the metagenomic and human transcriptomic data generated by an affordable bronchoalveolar lavage fluid (BLAF) mNGS assay and investigated their clinical utility for early differential diagnosis of lung cancer and pulmonary infection in patients with pulmonary diseases. Methods We recruited 775 patients with respiratory disease, including 160 pathologically diagnosed lung cancer and clinically diagnosed 615 infectious causes (131 tuberculosis, 172 fungal pneumonia and 312 bacterial pneumonia). An affordable mNGS assay on BALF samples collected from these patients on admission were performed. Using the generated mNGS data, we compared the differences in microbial diversity and host gene expression between lung cancer patients and pulmonary infection patients. The BLAF mNGS datasets of lung cancer group and each infection group were then randomly divided into a training dataset and a validation dataset at a ratio of approximately 3:1 for developing optimal MLBDDMs that can be used to distinguish lung cancer from various pulmonary infections. Results By comparing the BALF mNGS data of lung cancer (n = 160) and pulmonary infection (n = 615), we found that the infection group had higher microbial diversity than lung cancer group (P-value < 0.05). Respiratory colonizing microorganisms (e.g., Corynebacterium propinquum and Bacteroides uniformis) and pathogen (Mycobacterium tuberculosis and Cryptococcus neoformans) were found as differential microbes (adjusted p-value < 0.05, LDA score > 2). From BALF gene expression data, we detected 175 genes enriched in NOD-like receptor signaling pathway and chemokine signaling pathway differentially expressed between lung cancer and pulmonary infection groups (False Discovery Rate, FDR < 0.05). Cell composition analysis revealed that macrophage M1 was higher in lung infection group (P-value < 0.001), whereas mast cell activated and DCs activated were higher in lung cancer group (P-value < 0.001, P-value = 0.016). We integrated the metagenomic (microbial composition and human copy number variation) and transcriptomic data (host differentially expressed genes and cell composition) generated by the BALF mNGS assay with eleven machine learning classifiers to establish diagnosis models for distinguishing lung cancer from pulmonary infection (we named LC/PI model). The results showed that a Random Forest diagnostic model (the RF-LC/PI model) had optimal performance, with a sensitivity and specificity of 86.7% and 87.8%, respectively, in distinguishing lung cancer from pulmonary infection (area under the receiver operating characteristic curve [AUC] = 0.838 in the training dataset; AUC = 0.79 in a held-out validation dataset). Similar to the establishment of the LC/PI model, we further developed three diagnostic models for distinguishing lung cancer and tuberculosis (LC/TB model), lung cancer and fungal pneumonia (LC/FP model), and lung cancer and bacterial pneumonia (LC/BP model), respectively. The AUC of these three models were 0.91, 0.88, 0.91, respectively, showing a high differential diagnosis accuracy. Conclusions We have established MLBDDMs using BALF metagenomic and metatranscriptomic data and achieved superior accuracy for differentiating lung cancer and pulmonary infections, which could promote early diagnosis of pulmonary diseases and benefit more patients with one test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YJL完成签到 ,获得积分10
2秒前
rrrred发布了新的文献求助10
6秒前
回眸完成签到 ,获得积分10
7秒前
Duduk完成签到 ,获得积分10
8秒前
9秒前
rrrred完成签到,获得积分10
13秒前
南宫连虎发布了新的文献求助10
15秒前
传奇3应助cc采纳,获得10
18秒前
38秒前
量子星尘发布了新的文献求助10
38秒前
longh发布了新的文献求助20
40秒前
cc发布了新的文献求助10
42秒前
aa发布了新的文献求助10
43秒前
lucky完成签到 ,获得积分10
44秒前
123完成签到,获得积分10
53秒前
54秒前
54秒前
fat完成签到,获得积分10
57秒前
123发布了新的文献求助10
58秒前
脑洞疼应助lf采纳,获得10
1分钟前
健壮的花瓣完成签到 ,获得积分10
1分钟前
oywt发布了新的文献求助10
1分钟前
霸气鞯完成签到 ,获得积分10
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
bbdd2334发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李健的小迷弟应助bbdd2334采纳,获得10
1分钟前
1分钟前
忧伤的风华完成签到,获得积分10
1分钟前
thanhvader999完成签到,获得积分10
1分钟前
小乘号子发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520700
关于积分的说明 11204482
捐赠科研通 3257320
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613