A-242 Integrating Respiratory Metagenomics and Metatranscriptomics for Diagnosis of Lung Cancer and Infection in Patients with Pulmonary Diseases

肺癌 支气管肺泡灌洗 基因组 肺炎 肺结核 医学 癌症 鉴别诊断 内科学 生物 免疫学 病理 基因 生物化学
作者
Dai Hoon Han,Fei Yu,Yuxiao Chen
出处
期刊:Clinical Chemistry [American Association for Clinical Chemistry]
卷期号:69 (Supplement_1)
标识
DOI:10.1093/clinchem/hvad097.214
摘要

Abstract Background Advances in unbiased metagenomic next generation sequencing (mNGS) technologies have enabled the study of microbial and host genetic material (DNA and RNA) in one test. In this study, we aimed to develop machine learning-based differential diagnostic models (MLBDDMs) using the metagenomic and human transcriptomic data generated by an affordable bronchoalveolar lavage fluid (BLAF) mNGS assay and investigated their clinical utility for early differential diagnosis of lung cancer and pulmonary infection in patients with pulmonary diseases. Methods We recruited 775 patients with respiratory disease, including 160 pathologically diagnosed lung cancer and clinically diagnosed 615 infectious causes (131 tuberculosis, 172 fungal pneumonia and 312 bacterial pneumonia). An affordable mNGS assay on BALF samples collected from these patients on admission were performed. Using the generated mNGS data, we compared the differences in microbial diversity and host gene expression between lung cancer patients and pulmonary infection patients. The BLAF mNGS datasets of lung cancer group and each infection group were then randomly divided into a training dataset and a validation dataset at a ratio of approximately 3:1 for developing optimal MLBDDMs that can be used to distinguish lung cancer from various pulmonary infections. Results By comparing the BALF mNGS data of lung cancer (n = 160) and pulmonary infection (n = 615), we found that the infection group had higher microbial diversity than lung cancer group (P-value < 0.05). Respiratory colonizing microorganisms (e.g., Corynebacterium propinquum and Bacteroides uniformis) and pathogen (Mycobacterium tuberculosis and Cryptococcus neoformans) were found as differential microbes (adjusted p-value < 0.05, LDA score > 2). From BALF gene expression data, we detected 175 genes enriched in NOD-like receptor signaling pathway and chemokine signaling pathway differentially expressed between lung cancer and pulmonary infection groups (False Discovery Rate, FDR < 0.05). Cell composition analysis revealed that macrophage M1 was higher in lung infection group (P-value < 0.001), whereas mast cell activated and DCs activated were higher in lung cancer group (P-value < 0.001, P-value = 0.016). We integrated the metagenomic (microbial composition and human copy number variation) and transcriptomic data (host differentially expressed genes and cell composition) generated by the BALF mNGS assay with eleven machine learning classifiers to establish diagnosis models for distinguishing lung cancer from pulmonary infection (we named LC/PI model). The results showed that a Random Forest diagnostic model (the RF-LC/PI model) had optimal performance, with a sensitivity and specificity of 86.7% and 87.8%, respectively, in distinguishing lung cancer from pulmonary infection (area under the receiver operating characteristic curve [AUC] = 0.838 in the training dataset; AUC = 0.79 in a held-out validation dataset). Similar to the establishment of the LC/PI model, we further developed three diagnostic models for distinguishing lung cancer and tuberculosis (LC/TB model), lung cancer and fungal pneumonia (LC/FP model), and lung cancer and bacterial pneumonia (LC/BP model), respectively. The AUC of these three models were 0.91, 0.88, 0.91, respectively, showing a high differential diagnosis accuracy. Conclusions We have established MLBDDMs using BALF metagenomic and metatranscriptomic data and achieved superior accuracy for differentiating lung cancer and pulmonary infections, which could promote early diagnosis of pulmonary diseases and benefit more patients with one test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗忆灵完成签到,获得积分10
1秒前
ZhanG完成签到,获得积分20
1秒前
1秒前
房房房发布了新的文献求助10
1秒前
赘婿应助cc采纳,获得10
2秒前
w野发布了新的文献求助30
3秒前
3秒前
3秒前
昂叔的头发丝儿完成签到,获得积分10
6秒前
YxY发布了新的文献求助10
6秒前
Lainey完成签到,获得积分10
7秒前
8秒前
13秒前
YxY完成签到,获得积分20
13秒前
无花果应助震动的化蛹采纳,获得10
14秒前
efine完成签到,获得积分20
15秒前
科研通AI5应助xuebi采纳,获得10
18秒前
量子星尘发布了新的文献求助10
22秒前
和光同尘发布了新的文献求助30
22秒前
脑洞疼应助落日余晖采纳,获得10
23秒前
诚心夏岚发布了新的文献求助10
23秒前
23秒前
追寻清完成签到,获得积分10
23秒前
24秒前
科目三应助一吃一大碗采纳,获得10
24秒前
ncwgx完成签到,获得积分10
25秒前
卡卡西应助蒋j采纳,获得20
26秒前
27秒前
LR发布了新的文献求助10
29秒前
30秒前
30秒前
醉熏的问夏完成签到 ,获得积分10
30秒前
kagaminelen完成签到,获得积分10
30秒前
makabaka发布了新的文献求助10
32秒前
seebeg发布了新的文献求助10
33秒前
zpjjj完成签到,获得积分10
33秒前
邱丘邱发布了新的文献求助15
33秒前
落日余晖完成签到,获得积分10
33秒前
小颜完成签到,获得积分10
35秒前
雨天有伞完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971516
求助须知:如何正确求助?哪些是违规求助? 3516229
关于积分的说明 11181488
捐赠科研通 3251405
什么是DOI,文献DOI怎么找? 1795821
邀请新用户注册赠送积分活动 876051
科研通“疑难数据库(出版商)”最低求助积分说明 805245