Prediction of body composition in growing-finishing pigs using ultrasound based back-fat depth approach and machine learning algorithms

均方误差 支持向量机 数学 线性回归 决定系数 统计 预测建模 随机森林 回归分析 均方预测误差 回归 相关系数 机器学习 算法 计算机科学
作者
Jayanta Kumar Basak,Bhola Paudel,Nibas Chandra Deb,Dae Yeong Kang,Byeong Eun Moon,Shihab Ahmad Shahriar,Hyeon Tae Kim
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108269-108269 被引量:13
标识
DOI:10.1016/j.compag.2023.108269
摘要

Timely monitoring and precise estimation of body composition parameters, such as fat mass (FM) and fat-free mass (FFM), are crucial for pig production. Therefore, this study aimed to utilize three machine learning models, namely multiple linear regression (MLR), random forest regression (RFR), and support vector regression (SVR), to predict FM and FFM in growing-finishing pigs using four input combinations of three variables, i.e., mass of pigs, feed intake, and surface temperature of pigs. An ultrasound-based back-fat depth measurement approach was used to determine FM and FFM, and these measurements were compared with reference measurements obtained from slaughtered pigs. Data from two experimental periods in 2021 and 2022 were used for training and testing these models. Performance metrics, including the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), were used to evaluate the models' performance and stability. The results showed that the SVR model had the highest accuracy in predicting FM and FFM, with the ability to explain the relationship between input and target variables up to 94.4% in FM and 94.6% in FFM prediction. Additionally, the SVR model consistently outperformed the RFR and MLR models in predicting FM, with an increase in R2 of up to 6.72% and 27.96%, respectively, and a reduction in RMSE of up to 24.06% and 36.82%, respectively, across different input combinations. Similar results were obtained in FFM prediction, where the SVR model showed an increase in R2 of up to 6.47% and 22.45%, and a reduction in RMSE of up to 23.96% and 36.57% compared to RFR and MLR models, respectively. Moreover, the SVR model demonstrated the highest stability, with only 2.9% to 3.3% decrease in R2 during the testing phase compared to the training phase, while the RFR model exhibited the worst stability. Findings of the present study suggested that the SVR model was the most stable and reliable, along with the ultrasound-based back-fat depth approach for measuring FM and FFM in growing-finishing pigs. This approach could aid in monitoring meat quality and providing a rapid overview of body composition for pig farmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助研究吃采纳,获得10
刚刚
刚刚
柳绿柳发布了新的文献求助10
1秒前
1秒前
可爱的函函应助一位用户采纳,获得10
2秒前
科研通AI6应助妍妍采纳,获得10
2秒前
海棠听风完成签到,获得积分10
4秒前
李健应助纯真绿蕊采纳,获得10
4秒前
磷酸瞳完成签到,获得积分10
4秒前
4秒前
ZYL发布了新的文献求助10
4秒前
顾矜应助zjujirenjie采纳,获得10
4秒前
早晚会疯完成签到 ,获得积分10
5秒前
5秒前
浮游应助倒霉蛋采纳,获得10
6秒前
111发布了新的文献求助10
6秒前
Ava应助等待凡英采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
JRY5678发布了新的文献求助10
9秒前
五颜六色的白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
苹果白凡发布了新的文献求助10
12秒前
趣乐多发布了新的文献求助10
13秒前
周舟完成签到 ,获得积分10
14秒前
好叭发布了新的文献求助10
15秒前
传奇3应助寂寞的松采纳,获得30
15秒前
zjujirenjie发布了新的文献求助10
15秒前
JJJJJJ完成签到,获得积分10
15秒前
牛俊生发布了新的文献求助20
17秒前
科研通AI6应助柳绿柳采纳,获得10
22秒前
22秒前
英姑应助斯文可仁采纳,获得10
23秒前
9090y完成签到,获得积分10
23秒前
科研通AI5应助longjiafang采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
李健的小迷弟应助好叭采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942724
求助须知:如何正确求助?哪些是违规求助? 4208247
关于积分的说明 13081614
捐赠科研通 3987373
什么是DOI,文献DOI怎么找? 2183053
邀请新用户注册赠送积分活动 1198695
关于科研通互助平台的介绍 1111081