Prediction of body composition in growing-finishing pigs using ultrasound based back-fat depth approach and machine learning algorithms

均方误差 支持向量机 数学 线性回归 决定系数 统计 预测建模 随机森林 回归分析 均方预测误差 回归 相关系数 机器学习 算法 计算机科学
作者
Jayanta Kumar Basak,Bhola Paudel,Nibas Chandra Deb,Dae Yeong Kang,Byeong Eun Moon,Shihab Ahmad Shahriar,Hyeon Tae Kim
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108269-108269 被引量:5
标识
DOI:10.1016/j.compag.2023.108269
摘要

Timely monitoring and precise estimation of body composition parameters, such as fat mass (FM) and fat-free mass (FFM), are crucial for pig production. Therefore, this study aimed to utilize three machine learning models, namely multiple linear regression (MLR), random forest regression (RFR), and support vector regression (SVR), to predict FM and FFM in growing-finishing pigs using four input combinations of three variables, i.e., mass of pigs, feed intake, and surface temperature of pigs. An ultrasound-based back-fat depth measurement approach was used to determine FM and FFM, and these measurements were compared with reference measurements obtained from slaughtered pigs. Data from two experimental periods in 2021 and 2022 were used for training and testing these models. Performance metrics, including the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), were used to evaluate the models' performance and stability. The results showed that the SVR model had the highest accuracy in predicting FM and FFM, with the ability to explain the relationship between input and target variables up to 94.4% in FM and 94.6% in FFM prediction. Additionally, the SVR model consistently outperformed the RFR and MLR models in predicting FM, with an increase in R2 of up to 6.72% and 27.96%, respectively, and a reduction in RMSE of up to 24.06% and 36.82%, respectively, across different input combinations. Similar results were obtained in FFM prediction, where the SVR model showed an increase in R2 of up to 6.47% and 22.45%, and a reduction in RMSE of up to 23.96% and 36.57% compared to RFR and MLR models, respectively. Moreover, the SVR model demonstrated the highest stability, with only 2.9% to 3.3% decrease in R2 during the testing phase compared to the training phase, while the RFR model exhibited the worst stability. Findings of the present study suggested that the SVR model was the most stable and reliable, along with the ultrasound-based back-fat depth approach for measuring FM and FFM in growing-finishing pigs. This approach could aid in monitoring meat quality and providing a rapid overview of body composition for pig farmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的德地完成签到,获得积分10
1秒前
研玲发布了新的文献求助10
1秒前
科研通AI2S应助chowjb采纳,获得10
1秒前
2秒前
3秒前
maclogos发布了新的文献求助10
3秒前
小小完成签到,获得积分20
3秒前
饶啟豪完成签到,获得积分10
3秒前
4秒前
心已死何来心完成签到,获得积分10
4秒前
奋斗嫣然发布了新的文献求助10
4秒前
5秒前
6秒前
万能图书馆应助雨霖铃采纳,获得10
6秒前
7秒前
7秒前
辣椒酱发布了新的文献求助10
8秒前
Aggie发布了新的文献求助10
8秒前
qhtwld发布了新的文献求助30
8秒前
9秒前
会飞的鱼发布了新的文献求助10
10秒前
凳子琪发布了新的文献求助10
11秒前
12秒前
glq完成签到,获得积分20
12秒前
橙子发布了新的文献求助10
12秒前
星辰大海应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
CWNU_HAN应助科研通管家采纳,获得30
13秒前
科研扫地僧完成签到,获得积分10
13秒前
一一应助科研通管家采纳,获得30
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
wanci应助耀学菜菜采纳,获得10
14秒前
14秒前
明亮雪冥发布了新的文献求助10
14秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129103
求助须知:如何正确求助?哪些是违规求助? 2779953
关于积分的说明 7745314
捐赠科研通 2435069
什么是DOI,文献DOI怎么找? 1293897
科研通“疑难数据库(出版商)”最低求助积分说明 623472
版权声明 600542