Prediction of body composition in growing-finishing pigs using ultrasound based back-fat depth approach and machine learning algorithms

均方误差 支持向量机 数学 线性回归 决定系数 统计 预测建模 随机森林 回归分析 均方预测误差 回归 相关系数 机器学习 算法 计算机科学
作者
Jayanta Kumar Basak,Bhola Paudel,Nibas Chandra Deb,Dae Yeong Kang,Byeong Eun Moon,Shihab Ahmad Shahriar,Hyeon Tae Kim
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108269-108269 被引量:5
标识
DOI:10.1016/j.compag.2023.108269
摘要

Timely monitoring and precise estimation of body composition parameters, such as fat mass (FM) and fat-free mass (FFM), are crucial for pig production. Therefore, this study aimed to utilize three machine learning models, namely multiple linear regression (MLR), random forest regression (RFR), and support vector regression (SVR), to predict FM and FFM in growing-finishing pigs using four input combinations of three variables, i.e., mass of pigs, feed intake, and surface temperature of pigs. An ultrasound-based back-fat depth measurement approach was used to determine FM and FFM, and these measurements were compared with reference measurements obtained from slaughtered pigs. Data from two experimental periods in 2021 and 2022 were used for training and testing these models. Performance metrics, including the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), were used to evaluate the models' performance and stability. The results showed that the SVR model had the highest accuracy in predicting FM and FFM, with the ability to explain the relationship between input and target variables up to 94.4% in FM and 94.6% in FFM prediction. Additionally, the SVR model consistently outperformed the RFR and MLR models in predicting FM, with an increase in R2 of up to 6.72% and 27.96%, respectively, and a reduction in RMSE of up to 24.06% and 36.82%, respectively, across different input combinations. Similar results were obtained in FFM prediction, where the SVR model showed an increase in R2 of up to 6.47% and 22.45%, and a reduction in RMSE of up to 23.96% and 36.57% compared to RFR and MLR models, respectively. Moreover, the SVR model demonstrated the highest stability, with only 2.9% to 3.3% decrease in R2 during the testing phase compared to the training phase, while the RFR model exhibited the worst stability. Findings of the present study suggested that the SVR model was the most stable and reliable, along with the ultrasound-based back-fat depth approach for measuring FM and FFM in growing-finishing pigs. This approach could aid in monitoring meat quality and providing a rapid overview of body composition for pig farmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助qsxy采纳,获得10
刚刚
大气沧海发布了新的文献求助20
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
大个应助无辜的醉波采纳,获得10
1秒前
Seagull完成签到,获得积分10
2秒前
妮妮发布了新的文献求助10
2秒前
玖Nine发布了新的文献求助10
2秒前
大气夜南完成签到,获得积分10
3秒前
zzz236完成签到,获得积分10
3秒前
3秒前
小朱佩奇发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
小二郎应助苻慕梅采纳,获得10
4秒前
YU关注了科研通微信公众号
4秒前
高求发布了新的文献求助10
5秒前
呆萌朝雪发布了新的文献求助10
5秒前
小巧书雪完成签到,获得积分10
5秒前
5秒前
达到应助ye采纳,获得10
5秒前
溪年完成签到,获得积分10
5秒前
嘻嘻嘻发布了新的文献求助10
5秒前
养恩完成签到,获得积分10
5秒前
6秒前
Aurora发布了新的文献求助10
6秒前
8秒前
YiXianCoA发布了新的文献求助10
9秒前
张靖超完成签到 ,获得积分10
9秒前
馒头酶发布了新的文献求助10
9秒前
9秒前
汕头凯奇发布了新的文献求助10
10秒前
11秒前
11秒前
飘飘素晴发布了新的文献求助10
12秒前
温婉发布了新的文献求助20
12秒前
12秒前
余俊兰发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199