亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of body composition in growing-finishing pigs using ultrasound based back-fat depth approach and machine learning algorithms

均方误差 支持向量机 数学 线性回归 决定系数 统计 预测建模 随机森林 回归分析 均方预测误差 回归 相关系数 机器学习 算法 计算机科学
作者
Jayanta Kumar Basak,Bhola Paudel,Nibas Chandra Deb,Dae Yeong Kang,Byeong Eun Moon,Shihab Ahmad Shahriar,Hyeon Tae Kim
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108269-108269 被引量:13
标识
DOI:10.1016/j.compag.2023.108269
摘要

Timely monitoring and precise estimation of body composition parameters, such as fat mass (FM) and fat-free mass (FFM), are crucial for pig production. Therefore, this study aimed to utilize three machine learning models, namely multiple linear regression (MLR), random forest regression (RFR), and support vector regression (SVR), to predict FM and FFM in growing-finishing pigs using four input combinations of three variables, i.e., mass of pigs, feed intake, and surface temperature of pigs. An ultrasound-based back-fat depth measurement approach was used to determine FM and FFM, and these measurements were compared with reference measurements obtained from slaughtered pigs. Data from two experimental periods in 2021 and 2022 were used for training and testing these models. Performance metrics, including the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), were used to evaluate the models' performance and stability. The results showed that the SVR model had the highest accuracy in predicting FM and FFM, with the ability to explain the relationship between input and target variables up to 94.4% in FM and 94.6% in FFM prediction. Additionally, the SVR model consistently outperformed the RFR and MLR models in predicting FM, with an increase in R2 of up to 6.72% and 27.96%, respectively, and a reduction in RMSE of up to 24.06% and 36.82%, respectively, across different input combinations. Similar results were obtained in FFM prediction, where the SVR model showed an increase in R2 of up to 6.47% and 22.45%, and a reduction in RMSE of up to 23.96% and 36.57% compared to RFR and MLR models, respectively. Moreover, the SVR model demonstrated the highest stability, with only 2.9% to 3.3% decrease in R2 during the testing phase compared to the training phase, while the RFR model exhibited the worst stability. Findings of the present study suggested that the SVR model was the most stable and reliable, along with the ultrasound-based back-fat depth approach for measuring FM and FFM in growing-finishing pigs. This approach could aid in monitoring meat quality and providing a rapid overview of body composition for pig farmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光合作用完成签到,获得积分10
刚刚
务实书包完成签到,获得积分10
6秒前
爆米花应助小智采纳,获得10
7秒前
10秒前
浮游应助激情的代曼采纳,获得10
12秒前
aaron完成签到,获得积分10
13秒前
16秒前
18秒前
小龙完成签到,获得积分10
20秒前
斯文败类应助科研猫头鹰采纳,获得10
22秒前
小智发布了新的文献求助10
23秒前
nxy完成签到 ,获得积分10
27秒前
Owen应助EaRnn采纳,获得10
28秒前
玫瑰遇上奶油完成签到 ,获得积分10
40秒前
赵雨欣完成签到,获得积分10
42秒前
51秒前
52秒前
小巧尔曼完成签到,获得积分10
52秒前
52秒前
EaRnn发布了新的文献求助10
56秒前
chenzheng发布了新的文献求助10
58秒前
可爱的函函应助Karma采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
William_l_c完成签到,获得积分10
1分钟前
CipherSage应助Karma采纳,获得10
1分钟前
KaK完成签到,获得积分20
1分钟前
小二郎应助美满惜寒采纳,获得10
1分钟前
1分钟前
sunny发布了新的文献求助10
1分钟前
edtaa完成签到 ,获得积分10
1分钟前
飘逸的雁露完成签到,获得积分10
1分钟前
2分钟前
美满惜寒发布了新的文献求助10
2分钟前
汉堡包应助契合采纳,获得10
2分钟前
CATH完成签到 ,获得积分10
2分钟前
momo完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413082
求助须知:如何正确求助?哪些是违规求助? 4530302
关于积分的说明 14122792
捐赠科研通 4445232
什么是DOI,文献DOI怎么找? 2439148
邀请新用户注册赠送积分活动 1431216
关于科研通互助平台的介绍 1408578