Ridesharing evacuation models of disaster response

运输工程 准备 备灾 人口 公共交通 计算机科学 整数规划 运筹学 紧急疏散 过境(卫星) 应急管理 工程类 地理 人口学 算法 社会学 气象学 政治学 法学
作者
Liu Meng,Zhijie Dong,Dixizi Liu
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:184: 109565-109565
标识
DOI:10.1016/j.cie.2023.109565
摘要

Evacuation models based on public transportation have been shown to increase network capacity for transportation systems while improving community and societal disaster preparedness. However, due to a lack of private vehicles and inconvenient mobility, it is often difficult for vulnerable groups to arrive at shelters on time. To address this issue, this research proposes an evacuation strategy that incorporates the ridesharing concept, allowing individuals with vehicles to provide rides for carless groups. Three mixed-integer programming models are developed based on assumptions such as different capacities and pick-up principles, with the goal of maximizing the number of evacuees transported to assembly points or shelters in a limited amount of time. To evaluate the effectiveness of the proposed ridesharing evacuation models, a real-world case study in Houston is conducted. Numerical analyses are performed with five factors: evacuation scales, data generation, evacuation models, evacuation clearance times, and the number of vehicles involved in the evacuation process. The findings demonstrate that ridesharing evacuation models can provide viable alternative evacuation options to carless and public transit-dependent populations. Furthermore, the study reveals that increasing the number of vehicles to assist vulnerable groups may not be necessary in cities with high population density due to excessive traffic volume, which can hamper disaster response implementation. Additionally, the number of evacuees arriving at shelters or assembly points is unbalanced due to space–time constraints. To address this issue, relief supplies should be distributed on demand in these areas to reduce waste. The findings of this study can inform the development of more effective and efficient evacuation strategies that can better serve communities and vulnerable populations during times of crisis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
渐入佳境完成签到,获得积分10
1秒前
哇wwwww完成签到,获得积分10
1秒前
小螃蟹完成签到 ,获得积分10
1秒前
000完成签到,获得积分20
1秒前
CodeCraft应助白衣轻叹采纳,获得10
1秒前
杜七七发布了新的文献求助10
1秒前
AH完成签到,获得积分20
2秒前
2秒前
aq发布了新的文献求助10
2秒前
2秒前
肖守玉完成签到,获得积分10
2秒前
邓佳鑫Alan发布了新的文献求助10
2秒前
3秒前
岗岗发布了新的文献求助10
3秒前
不安红豆完成签到,获得积分10
3秒前
appa发布了新的文献求助10
3秒前
4秒前
木心应助风清扬采纳,获得50
4秒前
吴一一发布了新的文献求助10
4秒前
5秒前
5秒前
Helix_Elaina发布了新的文献求助10
5秒前
sakuma完成签到,获得积分10
5秒前
王欧尼完成签到,获得积分10
6秒前
忽悠老羊完成签到 ,获得积分10
6秒前
6秒前
光123完成签到 ,获得积分10
6秒前
明理采珊完成签到,获得积分10
6秒前
YU完成签到,获得积分10
7秒前
白青发布了新的文献求助10
7秒前
喜悦向日葵完成签到 ,获得积分10
7秒前
7秒前
wzg666完成签到,获得积分10
8秒前
xsss完成签到,获得积分10
8秒前
娃哈哈发布了新的文献求助10
8秒前
斯文败类应助zhuzhu采纳,获得10
8秒前
默默的橘子完成签到 ,获得积分10
8秒前
CodeCraft应助心灵美采纳,获得30
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582