SIRT2
锡尔图因
压力过载
肌肉肥大
细胞质
再灌注损伤
缺血
细胞生物学
心功能曲线
生物
心肌肥大
线粒体
内科学
乙酰化
药理学
内分泌学
医学
心力衰竭
生物化学
基因
作者
Xiaoyan Yang,Hsiang-Chun Chang,Yuki Tatekoshi,Amir Mahmoodzadeh,Maryam Balibegloo,Zeinab Najafi,Ruiheng Wu,Chunlei Chen,Tatsuya Sato,Jason S. Shapiro,Hossein Ardehali
出处
期刊:eLife
[eLife Sciences Publications, Ltd.]
日期:2023-09-20
卷期号:12
被引量:2
摘要
Sirtuins (SIRT) exhibit deacetylation or ADP-ribosyltransferase activity and regulate a wide range of cellular processes in the nucleus, mitochondria, and cytoplasm. The role of the only sirtuin that resides in the cytoplasm, SIRT2, in the development of ischemic injury and cardiac hypertrophy is not known. In this paper, we show that the hearts of mice with deletion of Sirt2 ( Sirt2 -/- ) display improved cardiac function after ischemia-reperfusion (I/R) and pressure overload (PO), suggesting that SIRT2 exerts maladaptive effects in the heart in response to stress. Similar results were obtained in mice with cardiomyocyte-specific Sirt2 deletion. Mechanistic studies suggest that SIRT2 modulates cellular levels and activity of nuclear factor (erythroid-derived 2)-like 2 (NRF2), which results in reduced expression of antioxidant proteins. Deletion of Nrf2 in the hearts of Sirt2 -/- mice reversed protection after PO. Finally, treatment of mouse hearts with a specific SIRT2 inhibitor reduced cardiac size and attenuates cardiac hypertrophy in response to PO. These data indicate that SIRT2 has detrimental effects in the heart and plays a role in cardiac response to injury and the progression of cardiac hypertrophy, which makes this protein a unique member of the SIRT family. Additionally, our studies provide a novel approach for treatment of cardiac hypertrophy and injury by targeting SIRT2 pharmacologically, providing a novel avenue for the treatment of these disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI