Simulation of runoff process based on the 3-D river network

地表径流 水文学(农业) 地形 环境科学 水流 频道(广播) 河流 数字高程模型 地质学 遥感 计算机科学 流域 地貌学 岩土工程 地图学 地理 生态学 计算机网络 构造盆地 生物
作者
Yuan Xue,Chao Qin,Baosheng Wu,Ga Zhang,Xudong Fu,Hongbo Ma,Dan Li,Bingjie Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:626: 130192-130192 被引量:5
标识
DOI:10.1016/j.jhydrol.2023.130192
摘要

Many rivers originating from mountainous areas cannot be adequately measured in the field to obtain sufficient basic data due to the challenging terrain, which poses difficulties for conducting relevant research such as hydrodynamic and sediment transport simulations, fluvial material fluxes. This study utilized a combination of 71 river cross sections extracted from multisource remote sensing data and 34 cross sections measured by hydrological stations between 2010 and 2018 to generate generalized cross sections for all river orders in the middle reaches of the Yellow River. By integrating the generalized cross sections, river surfaces, and traditional DEM river network, a comprehensive 3-D river network has been established to provide a more accurate representation of the morphological changes along the river channel. To tackle the challenge of simulating runoff in data-deficient areas, the Digital Yellow River Integrated Model (DYRIM), a potent distributed hydrological model, was enhanced by incorporating geometric parameters derived from a 3-D river network into almost all input parameters that can be obtained from multi-source remote sensing. This enhancement enabled the model to accurately simulate runoff in representative data-deficient rivers of the Loess Plateau. The Nash Efficiency coefficients for the simulated runoff exhibited improvement of 23% compared to previous studies, surpassing 0.8 for the period between 2010 and 2018. Additionally, the simulated errors for flow velocity and water depth were 7% and 9% respectively. This approach can provide essential data for the simulation of hydrological processes and improving hydrological models, as well as technical methodologies for related research such as sediment transport simulations and river carbon emissions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小兔子乖乖完成签到,获得积分10
3秒前
学术屎壳郎完成签到,获得积分10
3秒前
4秒前
9秒前
9秒前
隐形饼干完成签到 ,获得积分10
10秒前
苏哼哼发布了新的文献求助10
10秒前
10秒前
11秒前
tree完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
洛luo发布了新的文献求助10
15秒前
丘比特应助kukuki采纳,获得10
15秒前
希望天下0贩的0应助YJYLU采纳,获得10
16秒前
猪猪hero发布了新的文献求助10
16秒前
在水一方应助扎心采纳,获得10
16秒前
16秒前
16秒前
17秒前
orixero应助海燕采纳,获得10
19秒前
19秒前
ronnie发布了新的文献求助10
19秒前
20秒前
21秒前
zjq发布了新的文献求助10
21秒前
隐形饼干发布了新的文献求助10
21秒前
开心发布了新的文献求助10
22秒前
24秒前
www完成签到,获得积分10
24秒前
就像思念发布了新的文献求助10
24秒前
yt发布了新的文献求助10
24秒前
yyd完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
健忘芷完成签到,获得积分10
25秒前
111完成签到,获得积分10
26秒前
26秒前
26秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610394
求助须知:如何正确求助?哪些是违规求助? 4694892
关于积分的说明 14884996
捐赠科研通 4722310
什么是DOI,文献DOI怎么找? 2545126
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473045