生物炭
环境修复
化学
吸附
镉
铜
金属
锌
解吸
人体净化
土壤污染
环境化学
无机化学
土壤水分
污染
废物管理
有机化学
热解
土壤科学
工程类
生物
环境科学
生态学
作者
Shikai Li,Yujiao Wen,Yifan Wang,Meng Liu,Lezhu Su,Zhengjie Peng,Zhi Zhou,Nan Zhou
标识
DOI:10.1016/j.jhazmat.2023.132740
摘要
Neither chemical nor physical adsorption play well in heavy metals remediation in acid soil due to the competing behavior of abundant protons, where stable chelators that can be reused are of significant demand. Herein, biochar with abundant nitro and carboxyl groups is prepared, which can be assembled into self-supporting electrode. Under the catalyzation of electricity, the surface decorated -NO2 on the biochar can be in situ transformed into -NH2. Combined with the carboxyl group that attached on the same carbon atom, a special α-amino acid-like structure modified biochar (α-AC@BC) can be successfully constructed. Due to the strong affinity between the α-amino acid-like ligand and heavy metals, this α-AC@BC exhibits high removal efficiencies of 83.41%, 80.94%, 92.54% and 77.05% for available copper, cadmium, lead and zinc respectively, even in a strong acid soil with low pH of 4. After four adsorption-desorption cycles, the α-AC@BC could still eliminate 83.88% of copper. The high adsorption energy among -NH2, -COOH and heavy metals (-2.99 eV for copper, -1.90 eV for lead, -1.30 eV for zinc and -0.91 eV for cadmium) could form steady coordination structure to guarantee a highly practical application potential of α-AC@BC in strong acid soil. This study provides a novel concept for the decontamination of multiple heavy metal polluted acid soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI