The physiology of drought stress in two grapevine cultivars: Photosynthesis, antioxidant system, and osmotic regulation responses

生物 栽培 耐旱性 干旱胁迫 光合作用 丙二醛 植物生理学 渗透性休克 植物 抗氧化剂 基因 园艺 生理学 遗传学 生物化学
作者
YiLing Lin,Siyu Liu,Xiang Fang,Yanhua Ren,Zhijie You,Jiaxin Xia,Abdul Hakeem,Yuxian Yang,Lingyu Wang,Jinggui Fang,Lingfei Shangguan
出处
期刊:Physiologia Plantarum [Wiley]
卷期号:175 (5) 被引量:4
标识
DOI:10.1111/ppl.14005
摘要

Abstract Drought stress impedes viticultural plant growth and development by modifying various metabolic pathways. However, the regulatory network response underlying drought stress is not yet clear. In this study, the leaves and roots of “Shine Muscat” (“SM,” Vitis labruscana × Vitis vinifera ) and “Thompson Seedless” (“TS,” V. vinifera L. cv.) were subjected to drought stress to study the regulatory network used by drought stress. Morphophysiological results showed that the malondialdehyde content after 28 days of drought stress increased more significantly in “TS” than “SM.” Furthermore, the multiomics analysis studies showed that a total of 3036–6714 differentially expressed genes and 379–385 differentially abundant metabolites were identified in “SM” and “TS” grapevine cultivars under drought stress. Furthermore, the retained intron was the major form of differential alternative splicing event under drought stress. The photosynthesis pathway, antioxidant system, plant hormone signal transduction, and osmotic adjustment were the primary response systems in the two grapevine cultivars under drought stress. We have identified GRIK1 , RFS2 , and LKR/SDH as the hub genes in the coexpression network of drought stress. In addition, the difference in the accumulation of pheophorbide‐a reveals different drought resistance mechanisms in the two grapevine cultivars. Our study explained the difference in drought response between cultivars and tissues and identified drought stress‐responsive genes, which provides reference data for further understanding the regulatory network of drought tolerance in grapevine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助LLL采纳,获得10
刚刚
墙墙完成签到,获得积分10
刚刚
小蘑菇应助栀紫采纳,获得10
刚刚
1秒前
1秒前
Bloomy完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
tch发布了新的文献求助10
2秒前
细腻晓露发布了新的文献求助10
2秒前
葫芦娃大铁锤完成签到 ,获得积分10
3秒前
轻松狗应助负责的方盒采纳,获得10
3秒前
3秒前
欢欢完成签到,获得积分10
3秒前
Bloomy发布了新的文献求助10
4秒前
葡萄完成签到,获得积分10
4秒前
科研通AI2S应助sx采纳,获得10
4秒前
SICHEN应助sx采纳,获得10
4秒前
4秒前
东东发布了新的文献求助10
4秒前
chuling完成签到,获得积分10
5秒前
天天快乐应助迷路的半双采纳,获得10
5秒前
5秒前
言寺人文完成签到,获得积分10
6秒前
lancet发布了新的文献求助10
6秒前
丘比特应助想人陪的短靴采纳,获得10
7秒前
SciGPT应助cc采纳,获得10
7秒前
彭于晏应助SWD采纳,获得10
7秒前
易达完成签到,获得积分10
7秒前
拉长的凌旋完成签到,获得积分10
8秒前
打打应助alai采纳,获得10
9秒前
劲秉应助科研小笨猪采纳,获得10
9秒前
10秒前
充电宝应助zhangfuchao采纳,获得10
10秒前
zpw123发布了新的文献求助10
10秒前
韶华发布了新的文献求助10
11秒前
Wayne_Sun完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
yao发布了新的文献求助10
11秒前
11秒前
Ava应助柳七采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836