Lanqing Guo,Renjie Wan,Wenhan Yang,Alex C. Kot,Bihan Wen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers] 日期:2023-08-11卷期号:34 (4): 2550-2563被引量:3
标识
DOI:10.1109/tcsvt.2023.3303574
摘要
Images captured in the low-light condition suffer from low visibility and various imaging artifacts, e.g., real noise. Existing supervised algorithms for low-light image enhancement require a large set of pixel-aligned training image pairs, which are hard to prepare in practice. Though some recent unsupervised methods can alleviate such data challenges, many real world artifacts inevitably get falsely amplified in the enhanced results due to the lack of corresponding supervision. In this paper, instead of using perfectly aligned images for training, we creatively employ the misaligned real world images as the guidance, which are considerably easier to collect. Specifically, we propose a Cross-Image Disentanglement Network (CIDN) with weakly supervised learning, to separately extract cross-image brightness and image-specific content features from low/normal-light images. Based on that, CIDN can simultaneously correct the brightness and suppress image artifacts in the feature domain, which largely increases the robustness of the pixel shifts between training pairs. By considering real world corruptions, we propose a new training dataset with misaligned and noisy image pairs and its corresponding evaluation dataset. Experimental results show that our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets. The code implementation is publicly available at: https://github.com/GuoLanqing/CIDN .