ECSNet: An Accelerated Real-Time Image Segmentation CNN Architecture for Pavement Crack Detection

联营 卷积神经网络 分割 人工智能 计算机科学 深度学习 像素 模式识别(心理学)
作者
Tianjie Zhang,Donglei Wang,Yang Lu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (12): 15105-15112 被引量:7
标识
DOI:10.1109/tits.2023.3300312
摘要

The ability to perform pixel-wise segmentation on pavement cracks in real-time is paramount in road service condition assessment and maintenance decision-making practices. Recent deep learning detection models are focused on detection accuracy and require a large number of computing sources and long run times. However, highly efficient and accelerated models with acceptable accuracy in real-time pavement crack detection tasks are required but hard to achieve. In this work, we present a customized deep learning model architecture named Efficient Crack Segmentation Neural Network (ECSNet) for accelerated real-time pavement crack detection and segmentation without compromising performance. We introduce some novel parts, including small kernel convolutional layers and parallel max pooling and convolutional operation, into the architecture for crack information quickly extraction and model’s parameter reduction. We test latency and accuracy trade-offs of our proposed model using the DeepCrack Dataset. The results demonstrate strong performance in both accuracy and efficiency compared to other state-of-the-art models including DeepLabV3, FCN, LRASPP, Enet, Unet and DeepCrack. It is promising that ECSNet obtains the second place with an F1 score of (84.45%) and an Intersection over Union (IoU) of 73.08%. Furthermore, our model gains the largest Frames Per Second (FPS) and lowest training time among all the models which is 73.29 and 5011 seconds, respectively. It maintains a good balance between accuracy and efficiency metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Yumeng采纳,获得10
1秒前
3秒前
3秒前
安安完成签到,获得积分10
4秒前
茉莉发布了新的文献求助10
4秒前
脑洞疼应助h丶小虫采纳,获得10
5秒前
张西西完成签到 ,获得积分10
5秒前
yyh完成签到,获得积分10
5秒前
FloppyWow发布了新的文献求助10
5秒前
6秒前
如意寒烟发布了新的文献求助10
7秒前
8秒前
8秒前
蛋卷完成签到 ,获得积分10
9秒前
9秒前
小二郎应助科研通管家采纳,获得10
10秒前
omo应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
superxiao应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
tuanheqi应助科研通管家采纳,获得50
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
11秒前
zhangyidian应助科研通管家采纳,获得10
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
QOP应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
丘比特应助科研通管家采纳,获得30
12秒前
微冷潇一应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174