Energy storage properties of samarium-doped bismuth sodium titanate-based lead-free ceramics

储能 材料科学 陶瓷 钛酸铋 压电 兴奋剂 矿物学 分析化学(期刊) 复合材料 热力学 光电子学 化学 铁电性 冶金 功率(物理) 物理 无机化学 电介质 色谱法
作者
Xuyao Tang,Zimeng Hu,Vladimı́r Koval,Bin Yang,Graham C. Smith,Haixue Yan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 145363-145363 被引量:16
标识
DOI:10.1016/j.cej.2023.145363
摘要

Due to worldwide environmental regulations, lead-free relaxors, namely Bi0.5Na0.5TiO3–6BaTiO3 (BNT-6BT) are being extensively studied as an alternative candidate for energy storage applications. Here, Sm was introduced at different A sites of the relaxor system; specifically, the Sm-doped BNT-6BT system was designed to replace Bi (BNT-Bi), Na (BNT-Na), and both the Bi and Na ions (BNT-BiNa) by Sm ions. It was found that the BNT-Bi sample possesses high piezoelectricity (d33 = 117.3 pC N−1), whereas the BNT-Na and BNT-BiNa ceramics show exceptionally high values of the energy storage density and efficiency. To define the energy storage performance, a new concept based on determining the recoverable energy storage intensity is proposed in the present work. This allows bypassing the high applied electric fields in determining the value of the energy storage density. An ultrahigh recoverable energy storage density (4.41 J cm−3), excellent energy storage efficiency (83.96%) and superhigh recoverable energy storage intensity (19.17 × 10-3 J kV−1 cm−2) were achieved in the BNT-BiNa ceramics simultaneously. Furthermore, the energy storage characteristics exhibit an excellent stability over a wide temperature range from 25 °C to 150 °C. Thus, the developed Sm-doped BNT-6BT ceramics show great potential for piezoelectric and high-power energy storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mao12wang发布了新的文献求助10
刚刚
L坨坨完成签到 ,获得积分10
刚刚
耿强发布了新的文献求助10
刚刚
jmy发布了新的文献求助10
1秒前
科研小黑子完成签到,获得积分20
1秒前
1秒前
苏尔完成签到,获得积分10
1秒前
1秒前
浅墨完成签到 ,获得积分10
1秒前
mony完成签到,获得积分10
1秒前
2秒前
2秒前
huizi发布了新的文献求助10
2秒前
3秒前
菠萝冰棒发布了新的文献求助10
3秒前
3秒前
请叫我风吹麦浪完成签到,获得积分0
3秒前
清爽雪枫发布了新的文献求助10
4秒前
4秒前
4秒前
李健应助斜杠武采纳,获得10
5秒前
fengxj完成签到 ,获得积分10
5秒前
5秒前
5秒前
七七给七七的求助进行了留言
5秒前
6秒前
6秒前
Hello应助冷静的平安采纳,获得10
6秒前
FKVB_完成签到 ,获得积分10
7秒前
饼饼完成签到,获得积分10
7秒前
天天快乐应助木木采纳,获得10
7秒前
艺玲发布了新的文献求助10
7秒前
大气飞丹发布了新的文献求助10
7秒前
丫丫完成签到,获得积分10
8秒前
科研通AI2S应助觅桃乌龙采纳,获得10
8秒前
耿强完成签到,获得积分10
8秒前
wanci应助dd采纳,获得10
9秒前
汉堡包应助cuihl123采纳,获得10
9秒前
李浓完成签到,获得积分10
9秒前
DreamMaker发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759