Detecting Shape-Based Interactions Among Environmental Chemicals Using an Ensemble of Exposure-Mixture Regression and Interpretable Machine Learning Tools

随机森林 生物统计学 分位数 相互作用 计算机科学 集成学习 回归 机器学习 人工智能 统计 数学 医学 流行病学 内科学
作者
Vishal Midya,Chris Gennings
出处
期刊:Statistics in Biosciences [Springer Science+Business Media]
卷期号:16 (2): 395-415 被引量:3
标识
DOI:10.1007/s12561-023-09405-6
摘要

Abstract There is growing interest in discovering interactions between multiple environmental chemicals associated with increased adverse health effects. However, most existing approaches (1) either use a projection or product of multiple chemical exposures, which are difficult to interpret and (2) cannot simultaneously handle multi-ordered interactions. Therefore, we develop and validate a method to discover shape-based interactions that mimic usual toxicological interactions. We developed the Multi-ordered explanatory interaction (Moxie) algorithm by merging the efficacy of Extreme Gradient Boosting with the inferential power of Weighted Quantile Sum regression to extract synergistic interactions associated with the outcome/odds of disease in an adverse direction. We evaluated the algorithm’s performance through simulations and compared it with the currently available gold standard, the signed-iterative random forest algorithm. We used the 2017–18 US-NHANES dataset ( n = 447 adults) to evaluate interactions among nine per- and poly-fluoroalkyl substances and five metals measured in whole blood in association with serum low-density lipoprotein cholesterol. In simulations, the Moxie algorithm was highly specific and sensitive and had very low false discovery rates in detecting true synergistic interactions of 2nd, 3rd, and 4th order through moderate ( n = 250) to large ( n = 1000) sample sizes. In NHANES data, we found a two-order synergistic interaction between cadmium and lead detected in people with whole-blood cadmium concentrations and lead above 0.605 ug/dL and 1.485 ug/dL, respectively. Our findings demonstrate a novel validated approach in environmental epidemiology for detecting shape-based toxicologically mimicking interactions by integrating exposure-mixture regression and machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
饭团发布了新的文献求助10
1秒前
well发布了新的文献求助10
2秒前
东华帝君完成签到,获得积分10
2秒前
杆杆完成签到 ,获得积分10
2秒前
小二郎应助听话的白易采纳,获得10
2秒前
受伤破茧完成签到,获得积分10
3秒前
香蕉觅云应助糊糊涂涂采纳,获得10
4秒前
6秒前
朱光辉发布了新的文献求助10
7秒前
7秒前
Jenice完成签到,获得积分10
7秒前
7秒前
今后应助小十采纳,获得10
10秒前
香蕉觅云应助学术小废物采纳,获得10
11秒前
呆呆鱼完成签到,获得积分10
11秒前
Arizonacyy发布了新的文献求助10
11秒前
FashionBoy应助曾馨慧采纳,获得10
12秒前
12秒前
科研废发布了新的文献求助10
12秒前
胖箭鱼发布了新的文献求助10
13秒前
李彦完成签到,获得积分10
13秒前
14秒前
爆米花应助斑马还没睡采纳,获得10
15秒前
JJ发布了新的文献求助10
15秒前
青山完成签到,获得积分10
16秒前
开朗断秋发布了新的文献求助10
17秒前
CodeCraft应助饭团采纳,获得10
17秒前
18秒前
21秒前
在水一方应助少华采纳,获得10
22秒前
蔡蔡完成签到 ,获得积分10
22秒前
22秒前
默认用户名完成签到,获得积分10
22秒前
23秒前
ctrl少个T完成签到,获得积分20
23秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
scm应助科研通管家采纳,获得30
25秒前
所所应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959733
求助须知:如何正确求助?哪些是违规求助? 3505997
关于积分的说明 11127227
捐赠科研通 3237941
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871726
科研通“疑难数据库(出版商)”最低求助积分说明 803000