Detecting Shape-Based Interactions Among Environmental Chemicals Using an Ensemble of Exposure-Mixture Regression and Interpretable Machine Learning Tools

随机森林 生物统计学 分位数 相互作用 计算机科学 集成学习 回归 机器学习 人工智能 统计 数学 医学 流行病学 内科学
作者
Vishal Midya,Chris Gennings
出处
期刊:Statistics in Biosciences [Springer Nature]
卷期号:16 (2): 395-415 被引量:3
标识
DOI:10.1007/s12561-023-09405-6
摘要

Abstract There is growing interest in discovering interactions between multiple environmental chemicals associated with increased adverse health effects. However, most existing approaches (1) either use a projection or product of multiple chemical exposures, which are difficult to interpret and (2) cannot simultaneously handle multi-ordered interactions. Therefore, we develop and validate a method to discover shape-based interactions that mimic usual toxicological interactions. We developed the Multi-ordered explanatory interaction (Moxie) algorithm by merging the efficacy of Extreme Gradient Boosting with the inferential power of Weighted Quantile Sum regression to extract synergistic interactions associated with the outcome/odds of disease in an adverse direction. We evaluated the algorithm’s performance through simulations and compared it with the currently available gold standard, the signed-iterative random forest algorithm. We used the 2017–18 US-NHANES dataset ( n = 447 adults) to evaluate interactions among nine per- and poly-fluoroalkyl substances and five metals measured in whole blood in association with serum low-density lipoprotein cholesterol. In simulations, the Moxie algorithm was highly specific and sensitive and had very low false discovery rates in detecting true synergistic interactions of 2nd, 3rd, and 4th order through moderate ( n = 250) to large ( n = 1000) sample sizes. In NHANES data, we found a two-order synergistic interaction between cadmium and lead detected in people with whole-blood cadmium concentrations and lead above 0.605 ug/dL and 1.485 ug/dL, respectively. Our findings demonstrate a novel validated approach in environmental epidemiology for detecting shape-based toxicologically mimicking interactions by integrating exposure-mixture regression and machine learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeronimo发布了新的文献求助10
刚刚
1秒前
吴彦祖发布了新的文献求助10
1秒前
1秒前
orixero应助zzz采纳,获得10
1秒前
1秒前
CR7应助高高的枫叶采纳,获得20
1秒前
英姑应助呆萌芙蓉采纳,获得10
2秒前
2秒前
2秒前
Ackllye发布了新的文献求助10
2秒前
小森发布了新的文献求助10
3秒前
3秒前
懒大王发布了新的文献求助10
3秒前
girl发布了新的文献求助10
3秒前
1232211发布了新的文献求助10
4秒前
4秒前
小小K发布了新的文献求助10
4秒前
善良谷蓝发布了新的文献求助20
5秒前
5秒前
wang发布了新的文献求助10
5秒前
情怀应助愤怒的铁身采纳,获得10
5秒前
5秒前
kukusa发布了新的文献求助10
5秒前
默默荔枝发布了新的文献求助10
6秒前
大龙和二哥完成签到,获得积分20
6秒前
田様应助Dong采纳,获得10
6秒前
冷彬发布了新的文献求助10
6秒前
6秒前
6秒前
亦木澜发布了新的文献求助30
6秒前
在水一方应助柚子采纳,获得10
7秒前
aaa完成签到,获得积分10
7秒前
CipherSage应助橘涂初九采纳,获得10
7秒前
ymh发布了新的文献求助10
7秒前
小羊完成签到,获得积分10
7秒前
8秒前
zzr发布了新的文献求助10
8秒前
YANG发布了新的文献求助10
8秒前
朴素念之发布了新的文献求助10
8秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582126
求助须知:如何正确求助?哪些是违规求助? 4666270
关于积分的说明 14761714
捐赠科研通 4608242
什么是DOI,文献DOI怎么找? 2528583
邀请新用户注册赠送积分活动 1497888
关于科研通互助平台的介绍 1466665