亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting Shape-Based Interactions Among Environmental Chemicals Using an Ensemble of Exposure-Mixture Regression and Interpretable Machine Learning Tools

随机森林 生物统计学 分位数 相互作用 计算机科学 集成学习 回归 机器学习 人工智能 统计 数学 医学 流行病学 内科学
作者
Vishal Midya,Chris Gennings
出处
期刊:Statistics in Biosciences [Springer Nature]
卷期号:16 (2): 395-415 被引量:3
标识
DOI:10.1007/s12561-023-09405-6
摘要

Abstract There is growing interest in discovering interactions between multiple environmental chemicals associated with increased adverse health effects. However, most existing approaches (1) either use a projection or product of multiple chemical exposures, which are difficult to interpret and (2) cannot simultaneously handle multi-ordered interactions. Therefore, we develop and validate a method to discover shape-based interactions that mimic usual toxicological interactions. We developed the Multi-ordered explanatory interaction (Moxie) algorithm by merging the efficacy of Extreme Gradient Boosting with the inferential power of Weighted Quantile Sum regression to extract synergistic interactions associated with the outcome/odds of disease in an adverse direction. We evaluated the algorithm’s performance through simulations and compared it with the currently available gold standard, the signed-iterative random forest algorithm. We used the 2017–18 US-NHANES dataset ( n = 447 adults) to evaluate interactions among nine per- and poly-fluoroalkyl substances and five metals measured in whole blood in association with serum low-density lipoprotein cholesterol. In simulations, the Moxie algorithm was highly specific and sensitive and had very low false discovery rates in detecting true synergistic interactions of 2nd, 3rd, and 4th order through moderate ( n = 250) to large ( n = 1000) sample sizes. In NHANES data, we found a two-order synergistic interaction between cadmium and lead detected in people with whole-blood cadmium concentrations and lead above 0.605 ug/dL and 1.485 ug/dL, respectively. Our findings demonstrate a novel validated approach in environmental epidemiology for detecting shape-based toxicologically mimicking interactions by integrating exposure-mixture regression and machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助俊逸吐司采纳,获得10
1秒前
3秒前
龙骑士25完成签到 ,获得积分10
7秒前
11秒前
yyds发布了新的文献求助10
11秒前
15秒前
17秒前
年轻的凝云完成签到 ,获得积分10
19秒前
yyds发布了新的文献求助10
21秒前
Dani完成签到,获得积分10
24秒前
25秒前
Ava应助阿欢采纳,获得10
25秒前
Benhnhk21完成签到,获得积分10
26秒前
yyds发布了新的文献求助10
28秒前
29秒前
小二郎应助rht采纳,获得10
30秒前
褚青筠发布了新的文献求助10
30秒前
忧心的沁发布了新的文献求助10
30秒前
kh完成签到,获得积分10
36秒前
yyds发布了新的文献求助10
36秒前
tuanheqi应助ygs采纳,获得80
36秒前
Joeswith完成签到,获得积分10
37秒前
38秒前
kh发布了新的文献求助10
40秒前
wang5945完成签到 ,获得积分10
40秒前
yyds发布了新的文献求助10
42秒前
43秒前
Baraka发布了新的文献求助10
46秒前
万能图书馆应助褚青筠采纳,获得10
46秒前
迷你的靖雁完成签到,获得积分10
46秒前
49秒前
yyds发布了新的文献求助10
51秒前
隐形曼青应助Baraka采纳,获得10
51秒前
54秒前
55秒前
55秒前
56秒前
58秒前
yyds发布了新的文献求助10
59秒前
高兴的灵雁完成签到 ,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229656
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198399
捐赠科研通 2544631
什么是DOI,文献DOI怎么找? 1374517
科研通“疑难数据库(出版商)”最低求助积分说明 646996
邀请新用户注册赠送积分活动 621749