自愈水凝胶
京尼平
生物相容性
壳聚糖
明胶
肿胀 的
姜黄素
化学
复合数
戊二醛
脚手架
生物医学工程
碱性磷酸酶
再生(生物学)
材料科学
化学工程
高分子化学
生物化学
复合材料
色谱法
有机化学
医学
工程类
生物
酶
细胞生物学
作者
Nazanin Amiryaghoubi,Marziyeh Fathi,Azam Safary,Yousef Javadzadeh,Yadollah Omidi
标识
DOI:10.1016/j.ijbiomac.2023.128335
摘要
In this study, we developed a biocompatible composite hydrogel that incorporates microspheres. This was achieved using a Schiff base reaction, which combines the amino and aldehyde groups present in gelatin (Gel) and oxidized alginate (OAlg). We suggest this hydrogel as a promising scaffold for bone tissue regeneration. To further boost its osteogenic capabilities and mechanical resilience, we synthesized curcumin (Cur)-loaded chitosan microspheres (CMs) and integrated them into the Gel-OAlg matrix. This formed a robust composite gel framework. We conducted comprehensive evaluations of various properties, including gelation time, morphology, compressive strength, rheological behavior, texture, swelling rate, in vitro degradation, and release patterns. A remarkable observation was that the inclusion of 30 mg/mL Cur-CMs significantly enhanced the hydrogel's mechanical and bioactive features. Over three weeks, the Gel-OAlg/Cur-CMs (30) composite showed a cumulative curcumin release of 35.57%. This was notably lower than that observed in standalone CMs and Gel-OAlg hydrogels. Additionally, the Gel-OAlg/Cur-CMs (30) hydrogel presented a reduced swelling rate and weight loss relative to hydrogels devoid of Cur-CMs. On the cellular front, the Gel-OAlg/Cur-CMs (30) hydrogel showcased superior biocompatibility. It also displayed increased calcium deposition, alkaline phosphatase (ALP) activity, and elevated osteogenic gene expression in human bone marrow mesenchymal stem cells (hBMSCs). These results solidify its potential as a scaffold for bone tissue regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI