Deep Color Compensation for Generalized Underwater Image Enhancement

人工智能 计算机科学 水下 颜色校正 计算机视觉 基本事实 概率逻辑 补偿(心理学) 模式识别(心理学) 图像(数学) 心理学 海洋学 精神分析 地质学
作者
Yuan Rao,Wenjie Liu,Kunqian Li,Hao Fan,Sen Wang,Junyu Dong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2577-2590 被引量:12
标识
DOI:10.1109/tcsvt.2023.3305777
摘要

Underwater images suffer from quality degradation due to the underwater light absorption and scattering. It remains challenging to enhance underwater images using deep learning-based methods since the scarcity of real-world underwater images and their enhanced counterparts. Although existing works manually select well-enhanced images as reference images to train enhancement networks in an end-to-end manner, their performance tends to be inferior in some scenarios. We argue that the manually selected reference images cannot approximate their ground truth perfectly, leading to imbalanced learning and domain shift in enhancement networks. To address this issue, we analyse widely used underwater datasets from the perspective of color spectrum distribution and surprisingly find the sound color spectrum distribution of the enhanced reference images compared to in-air datasets. Based on this perceptive observation, instead of directly learning the enhancement mapping, we propose a novel methodology to learn color compensation for general purposes. Specifically, we present a probabilistic color compensation network that estimates the probabilistic distribution of colors by multi-scale volumetric fusion of texture and color features. We further propose a novel two-stage enhancement framework that first performs color compensation and then enhancement, which is highly flexible to be integrated with an existing enhancement method without tuning. Extensive experiments on underwater image enhancement across various challenging scenarios show that our proposed approach consistently improves the results of the popular conventional and learning-based methods by a significant margin. Moreover, our enhanced images achieve superior performance on underwater salient object detection and visual 3D reconstruction, demonstrating that our method can successfully break through the generalization bottleneck of existing learning-based enhancement models. Our implementation will be made available at https://github.com/Ray2OUC/P2CNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙謧宣发布了新的文献求助10
刚刚
文艺迎夏发布了新的文献求助10
刚刚
分茂完成签到 ,获得积分10
1秒前
鳗鱼念薇完成签到,获得积分10
1秒前
handan完成签到,获得积分10
1秒前
tiantian关注了科研通微信公众号
1秒前
Cochane完成签到,获得积分10
1秒前
2秒前
Laughter发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
自觉的巧蕊完成签到,获得积分20
4秒前
4秒前
4秒前
THEO完成签到,获得积分10
4秒前
Cochane发布了新的文献求助10
5秒前
子车代芙完成签到,获得积分10
5秒前
王金豪发布了新的文献求助10
5秒前
Suagy应助xdf采纳,获得10
5秒前
6秒前
Giao完成签到,获得积分10
6秒前
6秒前
梓榆发布了新的文献求助10
7秒前
7秒前
7秒前
风趣思山发布了新的文献求助10
8秒前
Lucas应助儒雅的忆翠采纳,获得10
8秒前
xxy完成签到,获得积分10
8秒前
英姑应助xxxxx采纳,获得10
9秒前
9秒前
ding应助fhr采纳,获得10
9秒前
SciGPT应助橙謧宣采纳,获得10
10秒前
ExtroGod完成签到,获得积分10
10秒前
11秒前
周末不上发条完成签到,获得积分10
11秒前
imzzy发布了新的文献求助10
11秒前
科研通AI6应助周大福采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575607
求助须知:如何正确求助?哪些是违规求助? 3995066
关于积分的说明 12367556
捐赠科研通 3668746
什么是DOI,文献DOI怎么找? 2021988
邀请新用户注册赠送积分活动 1056005
科研通“疑难数据库(出版商)”最低求助积分说明 943343