清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Color Compensation for Generalized Underwater Image Enhancement

人工智能 计算机科学 水下 颜色校正 计算机视觉 基本事实 概率逻辑 补偿(心理学) 模式识别(心理学) 图像(数学) 精神分析 心理学 海洋学 地质学
作者
Yuan Rao,Wenjie Liu,Kunqian Li,Hao Fan,Sen Wang,Junyu Dong
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (4): 2577-2590 被引量:12
标识
DOI:10.1109/tcsvt.2023.3305777
摘要

Underwater images suffer from quality degradation due to the underwater light absorption and scattering. It remains challenging to enhance underwater images using deep learning-based methods since the scarcity of real-world underwater images and their enhanced counterparts. Although existing works manually select well-enhanced images as reference images to train enhancement networks in an end-to-end manner, their performance tends to be inferior in some scenarios. We argue that the manually selected reference images cannot approximate their ground truth perfectly, leading to imbalanced learning and domain shift in enhancement networks. To address this issue, we analyse widely used underwater datasets from the perspective of color spectrum distribution and surprisingly find the sound color spectrum distribution of the enhanced reference images compared to in-air datasets. Based on this perceptive observation, instead of directly learning the enhancement mapping, we propose a novel methodology to learn color compensation for general purposes. Specifically, we present a probabilistic color compensation network that estimates the probabilistic distribution of colors by multi-scale volumetric fusion of texture and color features. We further propose a novel two-stage enhancement framework that first performs color compensation and then enhancement, which is highly flexible to be integrated with an existing enhancement method without tuning. Extensive experiments on underwater image enhancement across various challenging scenarios show that our proposed approach consistently improves the results of the popular conventional and learning-based methods by a significant margin. Moreover, our enhanced images achieve superior performance on underwater salient object detection and visual 3D reconstruction, demonstrating that our method can successfully break through the generalization bottleneck of existing learning-based enhancement models. Our implementation will be made available at https://github.com/Ray2OUC/P2CNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊哈哈哈完成签到,获得积分10
7秒前
Liufgui应助乏味采纳,获得10
23秒前
量子星尘发布了新的文献求助10
25秒前
新奇完成签到 ,获得积分10
25秒前
29秒前
香蕉觅云应助搞怪莫茗采纳,获得10
31秒前
xz完成签到 ,获得积分10
37秒前
46秒前
51秒前
小蝴蝶发布了新的文献求助10
51秒前
青出于蓝蔡完成签到,获得积分10
53秒前
乏味发布了新的文献求助10
56秒前
顾矜应助搞怪莫茗采纳,获得10
1分钟前
亭2007完成签到 ,获得积分10
1分钟前
1分钟前
FashionBoy应助小蝴蝶采纳,获得10
1分钟前
yshj完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
乏味发布了新的文献求助10
1分钟前
菠萝蜜完成签到 ,获得积分10
1分钟前
2分钟前
lb001完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
creep2020完成签到,获得积分10
2分钟前
香蕉觅云应助科研通管家采纳,获得10
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
2分钟前
FashionBoy应助舒适以松采纳,获得10
3分钟前
搞怪莫茗发布了新的文献求助10
3分钟前
不再挨训完成签到 ,获得积分10
3分钟前
3分钟前
斯尼奇完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
斯尼奇发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000