Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model

希尔伯特-黄变换 风力发电 均方误差 风速 随机性 风电预测 系列(地层学) 计算机科学 算法 时间序列 相关系数 数学 电力系统 统计 功率(物理) 气象学 能量(信号处理) 工程类 电气工程 物理 量子力学 古生物学 生物
作者
Dongdong Zhang,Baian Chen,Hongyu Zhu,Hui Hwang Goh,Yunxuan Dong,Thomas Wu
出处
期刊:Energy [Elsevier]
卷期号:285: 128762-128762 被引量:113
标识
DOI:10.1016/j.energy.2023.128762
摘要

In order to solve the security threat brought by the volatility and randomness of large-scale distributed wind power, this paper proposed a wind power prediction model which integrates two-layer decomposition and deep learning, effectively realizing the accurate prediction of wind power series with non-stationary characteristics. Initially, pearson correlation coefficient (PCC) is employed to identify primary meteorological variables as input series. Second, the wind power series are smoothed by implementing complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and then all subseries are decomposed and obtained by utilizing empirical wavelet transform (EWT) for the components with the highest complexity. Subsequently, hidden information related to wind speed, wind direction, and wind power series are extracted through the bidirectional temporal convolutional network (BiTCN), and the obtained information is fed into a bidirectional long short-term memory network (BiLSTM) optimized by attention mechanism for prediction. Finally, the predicted values of all components are summed to derive the final prediction results. In addition, the significant advantages of the prediction model in this paper are verified by five comparison experiments. The mean absolute error (MAE) and root mean square error (RMSE) of the model's one-step prediction in the January dataset are 2.1647 and 2.8456, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
PGao发布了新的文献求助10
1秒前
xiaotangyuan发布了新的文献求助20
3秒前
Hello应助AdamHoalcraft采纳,获得10
3秒前
帅气的颜演完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小航航013完成签到,获得积分10
4秒前
6秒前
6秒前
完美紫易完成签到,获得积分10
7秒前
华仔应助黄少阳采纳,获得10
7秒前
乐观的小鸡完成签到,获得积分10
9秒前
libe应助刘谦毅采纳,获得10
9秒前
简单沛山完成签到,获得积分10
10秒前
10秒前
10秒前
coesius完成签到,获得积分10
10秒前
luor完成签到,获得积分20
11秒前
冷艳的纸鹤完成签到,获得积分10
12秒前
12秒前
搜集达人应助沉静的砖头采纳,获得10
13秒前
Lucas应助残剑月采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
沉默发布了新的文献求助10
13秒前
zhang完成签到,获得积分10
14秒前
15秒前
无敌幸运儿完成签到 ,获得积分10
15秒前
Myownway发布了新的文献求助10
15秒前
Akim应助苹果的面包采纳,获得10
15秒前
猪猪侠007发布了新的文献求助10
16秒前
英姑应助Proustian采纳,获得10
17秒前
彭于晏应助Ray采纳,获得10
17秒前
内向万天完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
未晚发布了新的文献求助10
19秒前
yznfly应助hangfengzi采纳,获得30
20秒前
共享精神应助阿伟啊采纳,获得10
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704813
求助须知:如何正确求助?哪些是违规求助? 5158878
关于积分的说明 15242939
捐赠科研通 4858662
什么是DOI,文献DOI怎么找? 2607392
邀请新用户注册赠送积分活动 1558393
关于科研通互助平台的介绍 1516137