亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model

希尔伯特-黄变换 风力发电 均方误差 风速 随机性 风电预测 系列(地层学) 计算机科学 算法 时间序列 相关系数 数学 电力系统 统计 功率(物理) 气象学 能量(信号处理) 工程类 古生物学 物理 电气工程 量子力学 生物
作者
Dongdong Zhang,Baian Chen,Hongyu Zhu,Hui Hwang Goh,Yunxuan Dong,Thomas Wu
出处
期刊:Energy [Elsevier BV]
卷期号:285: 128762-128762 被引量:83
标识
DOI:10.1016/j.energy.2023.128762
摘要

In order to solve the security threat brought by the volatility and randomness of large-scale distributed wind power, this paper proposed a wind power prediction model which integrates two-layer decomposition and deep learning, effectively realizing the accurate prediction of wind power series with non-stationary characteristics. Initially, pearson correlation coefficient (PCC) is employed to identify primary meteorological variables as input series. Second, the wind power series are smoothed by implementing complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and then all subseries are decomposed and obtained by utilizing empirical wavelet transform (EWT) for the components with the highest complexity. Subsequently, hidden information related to wind speed, wind direction, and wind power series are extracted through the bidirectional temporal convolutional network (BiTCN), and the obtained information is fed into a bidirectional long short-term memory network (BiLSTM) optimized by attention mechanism for prediction. Finally, the predicted values of all components are summed to derive the final prediction results. In addition, the significant advantages of the prediction model in this paper are verified by five comparison experiments. The mean absolute error (MAE) and root mean square error (RMSE) of the model's one-step prediction in the January dataset are 2.1647 and 2.8456, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助席成风采纳,获得10
刚刚
stephanie_han完成签到,获得积分10
11秒前
18秒前
爱听歌台灯关注了科研通微信公众号
19秒前
席成风发布了新的文献求助10
22秒前
38秒前
科研通AI6应助stand采纳,获得10
44秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
46秒前
50秒前
杨锐发布了新的文献求助10
55秒前
Akim应助科研通管家采纳,获得10
57秒前
彩虹儿应助科研通管家采纳,获得10
57秒前
Hayat应助科研通管家采纳,获得10
57秒前
爆米花应助科研通管家采纳,获得10
57秒前
xmsyq完成签到 ,获得积分10
59秒前
Orange应助百里幻竹采纳,获得10
1分钟前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
DD完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
new1完成签到,获得积分10
2分钟前
GGBond完成签到 ,获得积分10
2分钟前
stand发布了新的文献求助10
2分钟前
2分钟前
李爱国应助忧伤的觅荷采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助百里幻竹采纳,获得10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
mickaqi完成签到 ,获得积分10
3分钟前
3分钟前
婼汐完成签到 ,获得积分10
4分钟前
叛逆黑洞完成签到 ,获得积分10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
Hello应助淡然的妙芙采纳,获得10
5分钟前
SciGPT应助彭佳丽采纳,获得10
5分钟前
酷波er应助伯云采纳,获得30
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910016
求助须知:如何正确求助?哪些是违规求助? 4186051
关于积分的说明 12998976
捐赠科研通 3953280
什么是DOI,文献DOI怎么找? 2167874
邀请新用户注册赠送积分活动 1186317
关于科研通互助平台的介绍 1093336