Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model

希尔伯特-黄变换 风力发电 均方误差 风速 随机性 风电预测 系列(地层学) 计算机科学 算法 时间序列 相关系数 数学 电力系统 统计 功率(物理) 气象学 能量(信号处理) 工程类 电气工程 物理 量子力学 古生物学 生物
作者
Dongdong Zhang,Baian Chen,Hongyu Zhu,Hui Hwang Goh,Yunxuan Dong,Thomas Wu
出处
期刊:Energy [Elsevier BV]
卷期号:285: 128762-128762 被引量:69
标识
DOI:10.1016/j.energy.2023.128762
摘要

In order to solve the security threat brought by the volatility and randomness of large-scale distributed wind power, this paper proposed a wind power prediction model which integrates two-layer decomposition and deep learning, effectively realizing the accurate prediction of wind power series with non-stationary characteristics. Initially, pearson correlation coefficient (PCC) is employed to identify primary meteorological variables as input series. Second, the wind power series are smoothed by implementing complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and then all subseries are decomposed and obtained by utilizing empirical wavelet transform (EWT) for the components with the highest complexity. Subsequently, hidden information related to wind speed, wind direction, and wind power series are extracted through the bidirectional temporal convolutional network (BiTCN), and the obtained information is fed into a bidirectional long short-term memory network (BiLSTM) optimized by attention mechanism for prediction. Finally, the predicted values of all components are summed to derive the final prediction results. In addition, the significant advantages of the prediction model in this paper are verified by five comparison experiments. The mean absolute error (MAE) and root mean square error (RMSE) of the model's one-step prediction in the January dataset are 2.1647 and 2.8456, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈剑愁发布了新的文献求助10
1秒前
CodeCraft应助圆蓬蓬采纳,获得10
1秒前
zhaoyuli完成签到,获得积分10
1秒前
啊啊发布了新的文献求助10
1秒前
1秒前
ZH发布了新的文献求助10
3秒前
研友_VZG7GZ应助Endeavor采纳,获得10
3秒前
warden完成签到 ,获得积分10
3秒前
科研通AI2S应助sisyphus_yy采纳,获得10
4秒前
施天问发布了新的文献求助10
4秒前
6秒前
Singularity应助内向寒云采纳,获得10
6秒前
dd完成签到 ,获得积分10
6秒前
7秒前
Miracle发布了新的文献求助10
8秒前
开花完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
redking完成签到,获得积分10
10秒前
lingquanmeng完成签到,获得积分10
11秒前
11秒前
羽生发布了新的文献求助10
11秒前
隐形曼青应助miumiu采纳,获得10
12秒前
beckham发布了新的文献求助10
13秒前
施天问完成签到,获得积分10
14秒前
uu发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
小蘑菇应助Miracle采纳,获得10
15秒前
轩轩轩轩完成签到 ,获得积分10
16秒前
16秒前
17秒前
litao完成签到,获得积分10
18秒前
乐乐应助九千七采纳,获得10
20秒前
梁三柏应助makabaka采纳,获得10
20秒前
21秒前
21秒前
xyz发布了新的文献求助10
22秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975755
求助须知:如何正确求助?哪些是违规求助? 3520108
关于积分的说明 11200829
捐赠科研通 3256492
什么是DOI,文献DOI怎么找? 1798298
邀请新用户注册赠送积分活动 877509
科研通“疑难数据库(出版商)”最低求助积分说明 806403