Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents

生物炭 吸附 均方误差 热解 磷酸 化学 水溶液中的金属离子 变压器 废水 近似误差 制浆造纸工业 金属 环境科学 核化学 数学 环境工程 统计 有机化学 工程类 电压 电气工程
作者
Zeeshan Haider Jaffari,Ather Abbas,Chang‐Min Kim,Jaegwan Shin,Jinwoo Kwak,Changgil Son,Yong-Gu Lee,Sangwon Kim,Kangmin Chon,Kyung Hwa Cho
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:462: 132773-132773 被引量:68
标识
DOI:10.1016/j.jhazmat.2023.132773
摘要

Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
薛武发布了新的文献求助10
2秒前
岁岁菌完成签到,获得积分10
3秒前
松子发布了新的文献求助10
3秒前
4秒前
英俊的铭应助有梦想的人采纳,获得10
5秒前
5秒前
5秒前
7秒前
热情蓝完成签到,获得积分20
7秒前
Zayro完成签到,获得积分10
8秒前
科研通AI6应助羊羊羊采纳,获得10
8秒前
9秒前
Lucas应助cordon采纳,获得10
10秒前
10秒前
simdows完成签到,获得积分10
10秒前
11秒前
Ava应助TTOM采纳,获得10
11秒前
yiyi完成签到,获得积分10
12秒前
CipherSage应助我吃柠檬采纳,获得10
12秒前
13秒前
13秒前
共享精神应助苒苒采纳,获得30
14秒前
YaoHui发布了新的文献求助10
14秒前
16秒前
16秒前
yyy发布了新的文献求助10
16秒前
16秒前
17秒前
悠悠发布了新的文献求助10
17秒前
华仔应助hahaer采纳,获得10
19秒前
追寻的雅柔完成签到,获得积分10
19秒前
希望天下0贩的0应助Snoopy采纳,获得10
19秒前
19秒前
豆子发布了新的文献求助10
19秒前
20秒前
星辰大海应助zakka采纳,获得30
20秒前
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396