Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents

生物炭 吸附 均方误差 热解 磷酸 化学 水溶液中的金属离子 废水 制浆造纸工业 金属 环境科学 核化学 数学 环境工程 统计 有机化学 工程类
作者
Zeeshan Haider Jaffari,Ather Abbas,Chang‐Min Kim,Jaegwan Shin,Jinwoo Kwak,Changgil Son,Yong-Gu Lee,Sangwon Kim,Kangmin Chon,Kyung Hwa Cho
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:462: 132773-132773 被引量:18
标识
DOI:10.1016/j.jhazmat.2023.132773
摘要

Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shamrock_2完成签到,获得积分10
刚刚
Owen应助Jay采纳,获得10
1秒前
自然的南露完成签到,获得积分10
1秒前
1秒前
野原完成签到,获得积分10
1秒前
2秒前
2秒前
云汐儿完成签到,获得积分10
2秒前
彭于晏应助小小学神采纳,获得10
2秒前
小小小柒发布了新的文献求助10
2秒前
3秒前
yumemakase完成签到,获得积分10
3秒前
安详的语蕊完成签到,获得积分10
4秒前
shamrock_2发布了新的文献求助10
4秒前
哒哒哒哒完成签到,获得积分10
4秒前
WWWWWW完成签到,获得积分10
4秒前
Eddie Joe发布了新的文献求助80
5秒前
hanzhang发布了新的文献求助10
5秒前
5秒前
5秒前
靓丽雨梅完成签到,获得积分10
5秒前
沉静的红酒完成签到,获得积分10
5秒前
我是老大应助QQQQ采纳,获得10
6秒前
6秒前
入江完成签到,获得积分10
6秒前
Cuids完成签到,获得积分20
7秒前
赵赵a完成签到,获得积分10
7秒前
sunflower完成签到,获得积分10
7秒前
7秒前
楚寅完成签到 ,获得积分10
8秒前
8秒前
QIANGWEI发布了新的文献求助10
8秒前
8秒前
Yolo完成签到,获得积分10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167575
求助须知:如何正确求助?哪些是违规求助? 2819030
关于积分的说明 7924492
捐赠科研通 2478874
什么是DOI,文献DOI怎么找? 1320523
科研通“疑难数据库(出版商)”最低求助积分说明 632810
版权声明 602443