Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents

生物炭 吸附 均方误差 热解 磷酸 化学 水溶液中的金属离子 变压器 废水 近似误差 制浆造纸工业 金属 环境科学 核化学 数学 环境工程 统计 有机化学 工程类 电压 电气工程
作者
Zeeshan Haider Jaffari,Ather Abbas,Chang‐Min Kim,Jaegwan Shin,Jinwoo Kwak,Changgil Son,Yong-Gu Lee,Sangwon Kim,Kangmin Chon,Kyung Hwa Cho
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:462: 132773-132773 被引量:68
标识
DOI:10.1016/j.jhazmat.2023.132773
摘要

Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研通管家采纳,获得10
刚刚
科研通AI6应助华东小可爱采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
慕青应助cc采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得30
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
zcl应助科研通管家采纳,获得150
1秒前
尉迟希望应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
zcl应助科研通管家采纳,获得30
2秒前
爆米花应助科研通管家采纳,获得30
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
现代晓绿应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
思源应助海绵君采纳,获得10
3秒前
充电宝应助柔弱的便当采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得50
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
4秒前
明亮中心完成签到,获得积分10
4秒前
结实的冰露完成签到,获得积分10
4秒前
fahbfafajk发布了新的文献求助10
5秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340