Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents

生物炭 吸附 均方误差 热解 磷酸 化学 水溶液中的金属离子 变压器 废水 近似误差 制浆造纸工业 金属 环境科学 核化学 数学 环境工程 统计 有机化学 工程类 电压 电气工程
作者
Zeeshan Haider Jaffari,Ather Abbas,Chang‐Min Kim,Jaegwan Shin,Jinwoo Kwak,Changgil Son,Yong-Gu Lee,Sangwon Kim,Kangmin Chon,Kyung Hwa Cho
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:462: 132773-132773 被引量:47
标识
DOI:10.1016/j.jhazmat.2023.132773
摘要

Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar's diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar's physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study's environmental implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
8R60d8应助烟酒不离生采纳,获得10
3秒前
8R60d8应助烟酒不离生采纳,获得10
3秒前
8R60d8应助烟酒不离生采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
橡树果完成签到 ,获得积分10
5秒前
完美小蘑菇应助潇湘雪月采纳,获得10
5秒前
张wx_100完成签到,获得积分10
7秒前
chenjingjing发布了新的文献求助10
7秒前
10秒前
illi发布了新的文献求助10
11秒前
13秒前
14秒前
Ava应助大青山采纳,获得10
15秒前
15秒前
2116564发布了新的文献求助10
17秒前
18秒前
婵婵发布了新的文献求助10
19秒前
ASZXDW发布了新的文献求助20
19秒前
20秒前
Orange应助1235656646采纳,获得10
21秒前
2311发布了新的文献求助10
22秒前
EDSS完成签到,获得积分10
22秒前
勤奋大地完成签到,获得积分10
24秒前
26秒前
2311完成签到,获得积分20
29秒前
共享精神应助小木安华采纳,获得10
31秒前
q1356478314应助2116564采纳,获得10
31秒前
31秒前
刘佳冉完成签到,获得积分10
31秒前
星期八发布了新的文献求助10
32秒前
万能图书馆应助潇湘雪月采纳,获得10
34秒前
黑石完成签到,获得积分10
34秒前
zpc发布了新的文献求助10
35秒前
小郭完成签到,获得积分10
36秒前
38秒前
38秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174