Dilated-residual U-Net for optical coherence tomography noise reduction and resolution improvement

光学相干层析成像 计算机科学 残余物 降噪 人工智能 散斑噪声 噪音(视频) 带宽(计算) 计算机视觉 斑点图案 算法 光学 图像(数学) 电信 物理
作者
Xinyang He,Zhengyu Qiao,Yong Huang,Qun Hao
标识
DOI:10.1117/12.2687055
摘要

Optical coherence tomography (OCT) is a non-invasive 3D imaging technique that provides high-resolution images and has been extensively used in biomedical research and clinical studies. Although micrometer resolution is already considered high for biological tissue imaging, the need for even higher resolution remains constant. Improving the resolution of OCT images can reveal previously unseen microstructures, which can aid in achieving more accurate diagnoses. Currently, the resolution of OCT images is primarily constrained by speckle noise and spectral bandwidth limitations. We have achieved simultaneous suppression of speckle noise and resolution improvement in OCT images in our previous work. However, traditional methods based on prior optimization iteration have a high computational cost, which limits its applicability. In this paper, we propose an improved deep learning model called DRUNET (Dilated Residual U-Net) to achieve noise reduction and resolution improvement simultaneously. The model incorporates dilated convolution and residual learning to enhance the learning capacity of the U-Net. In addition, we apply a simple, yet effective attention module called Convolutional Block Attention Module (CBAM) to improve DRUNET performance. We evaluate the performance of the DRUNET model in denoising and improving resolution on two types of OCT images. The experimental results demonstrate the effectiveness of the proposed model, which enables us to batch process poor-quality OCT images quickly without requiring any parameter fine-tuning under time constraints.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
micpeach发布了新的文献求助10
刚刚
ninomae发布了新的文献求助30
2秒前
4秒前
mof完成签到,获得积分10
4秒前
giao完成签到,获得积分10
4秒前
5秒前
sparrow完成签到,获得积分10
6秒前
7秒前
深情安青应助大力的含卉采纳,获得10
8秒前
Winna发布了新的文献求助10
8秒前
micpeach完成签到,获得积分10
9秒前
大模型应助柔之采纳,获得10
9秒前
10秒前
隐形曼青应助独钓寒江雪采纳,获得10
12秒前
13秒前
赵焱峥发布了新的文献求助10
14秒前
SCI发布了新的文献求助10
14秒前
15秒前
ASH完成签到 ,获得积分10
16秒前
paul完成签到,获得积分10
17秒前
11发布了新的文献求助10
18秒前
Winna完成签到,获得积分10
18秒前
hua发布了新的文献求助10
18秒前
19秒前
文光完成签到,获得积分10
21秒前
Aurora完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
24秒前
25秒前
Hayat发布了新的文献求助10
25秒前
柔之发布了新的文献求助10
26秒前
27秒前
27秒前
李健应助科研通管家采纳,获得10
27秒前
CodeCraft应助科研通管家采纳,获得10
27秒前
顺利紫山发布了新的文献求助10
27秒前
上官若男应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901