亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lightweight Defect Detection Equipment for Road Tunnels

损害赔偿 计算机科学 工程类 可靠性工程 法学 政治学
作者
Jian Liu,Chengshun Lv,Guanhong Lu,Zhiyuan Zhao,Bo Han,Feng Guo,Quanyi Xie
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 5107-5121 被引量:13
标识
DOI:10.1109/jsen.2023.3320816
摘要

The number of road tunnels has dramatically increased with extensive development of the transportation infrastructure, while the ever–increasing operational tunnels bring great pressure on the maintenance and management. Damages to the operational tunnels pose a significant risk to traffic safety. In particular, the lining cracks can significantly reduce structural load–bearing capacity of the tunnel. It is extremely important to develop a tunnel lining crack detection system to ensure operational and maintenance safety of the tunnel. Currently, the detection of lining cracks mainly relies on manual inspection, which is inefficient and cannot guarantee accuracy. Therefore, there is an urgent need to develop automatic lining crack detection technique to satisfy the growing demands in defect detection. To address the current issues regarding the lining crack detection, we develop a lightweight detection equipment for road tunnels in this study. Accurate lining images and posture information can be obtained through multi–sensor fusion, space–time synchronization and posture matching techniques. In addition, the YOLOv5 network is able to quickly identify damages from a large amount of data. This study improves the efficiency of crack detection, as well as addresses the issues on the large volume and inconvenience of road closure during detection of the traditional detection equipment, which can serve as a useful reference for tunnel operation and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助hxjnx采纳,获得10
1秒前
可爱的函函应助小叮当采纳,获得10
1秒前
睡不醒的xx完成签到 ,获得积分10
2秒前
rwq完成签到 ,获得积分10
2秒前
慕青应助蜘蛛人采纳,获得10
4秒前
霸气师完成签到 ,获得积分10
4秒前
10秒前
www完成签到 ,获得积分10
11秒前
12秒前
14秒前
正直乘云完成签到,获得积分10
16秒前
18秒前
樊少鹏发布了新的文献求助10
19秒前
20秒前
21秒前
今夕何夕完成签到,获得积分10
22秒前
22秒前
fanniezhao发布了新的文献求助10
25秒前
蜘蛛人给蜘蛛人的求助进行了留言
25秒前
呆呆的猕猴桃完成签到 ,获得积分10
26秒前
28秒前
SciGPT应助hvu采纳,获得10
28秒前
hahahan完成签到 ,获得积分10
31秒前
32秒前
成就人杰完成签到 ,获得积分10
32秒前
喜悦宫苴完成签到,获得积分10
36秒前
Ye完成签到,获得积分10
39秒前
43秒前
43秒前
43秒前
43秒前
单纯的又菱完成签到,获得积分10
44秒前
点点点完成签到 ,获得积分10
46秒前
dreamboat完成签到 ,获得积分10
47秒前
浮游应助科研通管家采纳,获得10
48秒前
合一海盗完成签到,获得积分10
48秒前
汉堡包应助科研通管家采纳,获得10
48秒前
48秒前
韩XR完成签到 ,获得积分10
50秒前
跳跃梨愁完成签到 ,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
The Experimental Biology of Bryophytes 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5366475
求助须知:如何正确求助?哪些是违规求助? 4495121
关于积分的说明 13995390
捐赠科研通 4399432
什么是DOI,文献DOI怎么找? 2416683
邀请新用户注册赠送积分活动 1409448
关于科研通互助平台的介绍 1384563