Lightweight Defect Detection Equipment for Road Tunnels

损害赔偿 计算机科学 工程类 可靠性工程 法学 政治学
作者
Jian Liu,Chengshun Lv,Guanhong Lu,Zhiyuan Zhao,Bo Han,Feng Guo,Quanyi Xie
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (4): 5107-5121 被引量:1
标识
DOI:10.1109/jsen.2023.3320816
摘要

The number of road tunnels has dramatically increased with extensive development of the transportation infrastructure, while the ever–increasing operational tunnels bring great pressure on the maintenance and management. Damages to the operational tunnels pose a significant risk to traffic safety. In particular, the lining cracks can significantly reduce structural load–bearing capacity of the tunnel. It is extremely important to develop a tunnel lining crack detection system to ensure operational and maintenance safety of the tunnel. Currently, the detection of lining cracks mainly relies on manual inspection, which is inefficient and cannot guarantee accuracy. Therefore, there is an urgent need to develop automatic lining crack detection technique to satisfy the growing demands in defect detection. To address the current issues regarding the lining crack detection, we develop a lightweight detection equipment for road tunnels in this study. Accurate lining images and posture information can be obtained through multi–sensor fusion, space–time synchronization and posture matching techniques. In addition, the YOLOv5 network is able to quickly identify damages from a large amount of data. This study improves the efficiency of crack detection, as well as addresses the issues on the large volume and inconvenience of road closure during detection of the traditional detection equipment, which can serve as a useful reference for tunnel operation and maintenance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贰鸟应助drzz采纳,获得10
1秒前
2秒前
2秒前
lizhen完成签到,获得积分10
3秒前
英俊的铭应助lalala采纳,获得10
4秒前
善学以致用应助jessiefuli采纳,获得10
4秒前
4秒前
打打应助认真跳跳糖采纳,获得10
4秒前
淡定荧完成签到,获得积分10
4秒前
随波逐流完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
5秒前
YUMI发布了新的文献求助10
5秒前
5秒前
张部长发布了新的文献求助10
6秒前
善学以致用应助郭志倩采纳,获得10
6秒前
奥特超曼应助幽默贞采纳,获得10
7秒前
幸福大白发布了新的文献求助10
7秒前
xyx发布了新的文献求助10
7秒前
积极的誉发布了新的文献求助10
8秒前
Georges-09发布了新的文献求助10
9秒前
xn201120发布了新的文献求助10
9秒前
好好好发布了新的文献求助10
10秒前
小哈完成签到,获得积分20
11秒前
顾矜应助我的小宝贝采纳,获得10
11秒前
ioio发布了新的文献求助20
12秒前
13秒前
幸福大白发布了新的文献求助30
16秒前
优秀的凌波完成签到,获得积分20
17秒前
1MENINA1完成签到 ,获得积分10
18秒前
18秒前
天天快乐应助快来拾糖采纳,获得10
18秒前
不再挨训完成签到 ,获得积分10
18秒前
jessiefuli发布了新的文献求助10
19秒前
冷傲山彤完成签到,获得积分10
21秒前
Hello应助研友_84WJXZ采纳,获得10
22秒前
竹焚完成签到 ,获得积分10
22秒前
脑洞疼应助hhh采纳,获得10
23秒前
23秒前
冷傲山彤发布了新的文献求助10
24秒前
jessiefuli完成签到,获得积分20
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176