The Discrete Theorema Egregium

高斯曲率 数学 意义(存在) 中心(范畴论) 卓越 数学科学 曲率 艺术史 牙石(牙科) 数学教育 几何学 哲学 艺术 认识论 化学 牙科 医学 结晶学
作者
Thomas Banchoff,Felix Günther
出处
期刊:American Mathematical Monthly [Taylor & Francis]
卷期号:131 (1): 30-47
标识
DOI:10.1080/00029890.2023.2263299
摘要

AbstractIn 1827, Gauss proved that Gaussian curvature is actually an intrinsic quantity, meaning that it can be calculated just from measurements within the surface. Before, curvature of surfaces could only be computed extrinsically, meaning that an ambient space is needed. Gauss named this remarkable finding Theorema Egregium. In this paper, we discuss a discrete version of this theorem for polyhedral surfaces. We give an elementary proof that the common extrinsic and intrinsic definitions of discrete Gaussian curvature are equivalent. AcknowledgmentThe authors thank the two anonymous reviewers and the editorial board for their valuable remarks. The research was initiated during the second author’s stay at the Max Planck Institute for Mathematics in Bonn. It was funded by the Deutsche Forschungsgemeinschaft DFG through the Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics” and under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1, project ID: 390685689).Additional informationNotes on contributorsThomas F. BanchoffTHOMAS BANCHOFF is professor emeritus of mathematics at Brown University, where he taught from 1967 to 2015. He received his Ph.D. from the University of California, Berkeley, in 1964 and served as president of the MAA from 1999 to 2000.Department of Mathematics, Brown University, Box 1917, 151 Thayer Street, Providence RI 02912Thomas_Banchoff@brown.eduFelix GüntherFELIX GÜNTHER received his Ph.D. in mathematics from Technische Universität Berlin in 2014. After holding postdoctoral positions at the Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette, the Isaac Newton Institute for Mathematical Sciences in Cambridge, the Erwin Schrödinger International Institute for Mathematics and Physics in Vienna, the Max Planck Institute for Mathematics in Bonn, and the University of Geneva, he came back to Technische Universität Berlin in 2018. His research interests include discrete differential geometry and discrete complex analysis. He also has a passion for science communication.Technische Universität Berlin, Institut für Mathematik MA 8-3, Straße des 17. Juni 136, 10623 Berlin, Germanyfguenth@math.tu-berlin.de
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YZQ发布了新的文献求助10
2秒前
黑咖啡完成签到,获得积分10
2秒前
Liufgui应助可靠的如之采纳,获得10
4秒前
科研通AI2S应助阿俊采纳,获得10
5秒前
6秒前
8秒前
10秒前
10秒前
JamesPei应助YZQ采纳,获得10
11秒前
Orange应助邪恶花生米采纳,获得10
11秒前
weijie发布了新的文献求助10
11秒前
hf完成签到,获得积分10
11秒前
11秒前
13秒前
量子星尘发布了新的文献求助30
14秒前
硅负极完成签到,获得积分10
14秒前
zzt发布了新的文献求助10
14秒前
15秒前
Dr.Yang发布了新的文献求助10
16秒前
18秒前
刻苦的秋柔完成签到,获得积分10
20秒前
意大利种马完成签到,获得积分20
21秒前
orixero应助写得出发的中采纳,获得10
23秒前
刘雨森完成签到 ,获得积分10
24秒前
坦率白萱应助littleblack采纳,获得10
25秒前
香蕉觅云应助意大利种马采纳,获得10
26秒前
ZS完成签到,获得积分10
26秒前
帅哥的事情少管完成签到,获得积分10
27秒前
littlestone完成签到,获得积分10
28秒前
NexusExplorer应助ShuXU采纳,获得10
30秒前
果果完成签到,获得积分10
30秒前
项绝义完成签到,获得积分10
31秒前
31秒前
空古悠浪发布了新的文献求助20
31秒前
31秒前
31秒前
33秒前
所所应助Richard采纳,获得10
33秒前
热心市民小红花应助哈哈采纳,获得50
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052