Multi-Source Soft Labeling and Hard Negative Sampling for Retrieval Distractor Ranking

计算机科学 排名(信息检索) 相关性(法律) 背景(考古学) 任务(项目管理) 机器学习 人工智能 采样(信号处理) 编码器 过程(计算) 样品(材料) 情报检索 古生物学 化学 管理 滤波器(信号处理) 色谱法 政治学 法学 经济 计算机视觉 生物 操作系统
作者
Jiayun Wang,Wenge Rong,Jun Bai,Zhiwei Sun,Yuanxin Ouyang,Zhang Xiong
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tlt.2023.3325549
摘要

Multiple Choice Questions (MCQs) are a kind of widely adopted approaches in learning assessment. Recently the automatic generation of MCQs has become a popular research area. In this task, Distractor Ranking (DR) is one of the most meaningful and challenging sub-tasks, where the DR models learn to select high-quality distractors from numerous candidates. Currently, some DR methods adopt a two-stage ranking strategy, which brings about a complex process and error propagation. Others directly use Single-Encoder based model to improve the overall performance, which however suffers from low efficiency. To tackle these problems, we propose Retrieval Distractor Ranking (ReDR) task to meet the requirements for practical distractor retrieval scenarios, in which the models should achieve relatively high performance within an acceptable time. In this research, we develop an end-to-end way based on Dual-Encoders framework to solve ReDR task. Besides, we propose multiple kinds of relevance scores including Context-Context, Context-Distractor and Distractor-Distractor, which have been employed in two strategies: 1) Multi-source Soft Labeling (MSL), which assigns each candidate an appropriate soft label from multiple kinds of relevance scores to better simulate the sample distribution of ReDR task; 2) Multi-Source Hard Negative Sampling (MHNS), which selects the hard negative samples according to multiple kinds of relevance scores and further distinguishes the difference between them and the positive samples. The extensive experiments on two well-known MCQ benchmarks have proven the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liucc完成签到,获得积分10
1秒前
jameslee04完成签到 ,获得积分10
1秒前
英俊妙柏完成签到,获得积分10
1秒前
缓慢的山柳完成签到,获得积分10
2秒前
苹果蜗牛完成签到 ,获得积分10
2秒前
科研小哥完成签到,获得积分10
3秒前
大可发布了新的文献求助10
3秒前
3秒前
duoyu发布了新的文献求助10
3秒前
华仔应助晚云高采纳,获得10
3秒前
篮球发布了新的文献求助10
3秒前
dandna完成签到 ,获得积分10
4秒前
乐悠悠发布了新的文献求助15
4秒前
hxhw完成签到,获得积分10
4秒前
yunfengwang完成签到,获得积分10
5秒前
蓝桉完成签到,获得积分20
6秒前
7秒前
8秒前
8秒前
风中小懒虫完成签到,获得积分10
8秒前
8秒前
小鹏发布了新的文献求助10
9秒前
隐形曼青应助sweat采纳,获得10
9秒前
Icey完成签到 ,获得积分10
11秒前
关琦完成签到,获得积分10
12秒前
sherry完成签到,获得积分10
12秒前
光电很亮发布了新的文献求助10
13秒前
研友_VZG7GZ应助bonnie采纳,获得10
13秒前
吃肉璇璇发布了新的文献求助10
13秒前
qxz完成签到,获得积分10
13秒前
xiaojie2024完成签到,获得积分10
13秒前
哈哈哈发布了新的文献求助10
13秒前
天天快乐应助熬夜的桃子采纳,获得10
14秒前
柯一一应助平凡的一天采纳,获得10
14秒前
14秒前
14秒前
326发布了新的文献求助10
15秒前
Phuong完成签到,获得积分10
15秒前
XTechMan完成签到,获得积分10
15秒前
封典完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953707
求助须知:如何正确求助?哪些是违规求助? 3499536
关于积分的说明 11096135
捐赠科研通 3230090
什么是DOI,文献DOI怎么找? 1785865
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801479