亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Source Soft Labeling and Hard Negative Sampling for Retrieval Distractor Ranking

计算机科学 排名(信息检索) 相关性(法律) 背景(考古学) 任务(项目管理) 机器学习 人工智能 采样(信号处理) 编码器 过程(计算) 样品(材料) 情报检索 操作系统 滤波器(信号处理) 政治学 古生物学 生物 经济 化学 管理 色谱法 法学 计算机视觉
作者
Jiayun Wang,Wenge Rong,Jun Bai,Zhiwei Sun,Yuanxin Ouyang,Zhang Xiong
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tlt.2023.3325549
摘要

Multiple Choice Questions (MCQs) are a kind of widely adopted approaches in learning assessment. Recently the automatic generation of MCQs has become a popular research area. In this task, Distractor Ranking (DR) is one of the most meaningful and challenging sub-tasks, where the DR models learn to select high-quality distractors from numerous candidates. Currently, some DR methods adopt a two-stage ranking strategy, which brings about a complex process and error propagation. Others directly use Single-Encoder based model to improve the overall performance, which however suffers from low efficiency. To tackle these problems, we propose Retrieval Distractor Ranking (ReDR) task to meet the requirements for practical distractor retrieval scenarios, in which the models should achieve relatively high performance within an acceptable time. In this research, we develop an end-to-end way based on Dual-Encoders framework to solve ReDR task. Besides, we propose multiple kinds of relevance scores including Context-Context, Context-Distractor and Distractor-Distractor, which have been employed in two strategies: 1) Multi-source Soft Labeling (MSL), which assigns each candidate an appropriate soft label from multiple kinds of relevance scores to better simulate the sample distribution of ReDR task; 2) Multi-Source Hard Negative Sampling (MHNS), which selects the hard negative samples according to multiple kinds of relevance scores and further distinguishes the difference between them and the positive samples. The extensive experiments on two well-known MCQ benchmarks have proven the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
14秒前
香菜张完成签到,获得积分10
26秒前
席江海完成签到 ,获得积分10
28秒前
28秒前
曦耀发布了新的文献求助10
40秒前
1分钟前
zhjl发布了新的文献求助10
1分钟前
wangfaqing942完成签到 ,获得积分10
1分钟前
1分钟前
c138zyx发布了新的文献求助10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
2分钟前
JamesPei应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
ZYP发布了新的文献求助10
3分钟前
3分钟前
呜呜吴完成签到,获得积分10
3分钟前
善学以致用应助ss采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
zxin完成签到 ,获得积分10
4分钟前
袁青寒完成签到,获得积分10
4分钟前
Chouvikin完成签到,获得积分10
4分钟前
小伙子完成签到,获得积分10
4分钟前
ZYP发布了新的文献求助10
5分钟前
Augustines完成签到,获得积分10
5分钟前
histamin完成签到,获得积分10
5分钟前
lsh完成签到,获得积分10
5分钟前
5分钟前
大力完成签到 ,获得积分10
5分钟前
ss发布了新的文献求助10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
6分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
所所应助科研通管家采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4749971
关于积分的说明 15007221
捐赠科研通 4797866
什么是DOI,文献DOI怎么找? 2563996
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529