Multi-Source Soft Labeling and Hard Negative Sampling for Retrieval Distractor Ranking

计算机科学 排名(信息检索) 相关性(法律) 背景(考古学) 任务(项目管理) 机器学习 人工智能 采样(信号处理) 编码器 过程(计算) 样品(材料) 情报检索 操作系统 滤波器(信号处理) 政治学 古生物学 生物 经济 化学 管理 色谱法 法学 计算机视觉
作者
Jiayun Wang,Wenge Rong,Jun Bai,Zhiwei Sun,Yuanxin Ouyang,Zhang Xiong
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tlt.2023.3325549
摘要

Multiple Choice Questions (MCQs) are a kind of widely adopted approaches in learning assessment. Recently the automatic generation of MCQs has become a popular research area. In this task, Distractor Ranking (DR) is one of the most meaningful and challenging sub-tasks, where the DR models learn to select high-quality distractors from numerous candidates. Currently, some DR methods adopt a two-stage ranking strategy, which brings about a complex process and error propagation. Others directly use Single-Encoder based model to improve the overall performance, which however suffers from low efficiency. To tackle these problems, we propose Retrieval Distractor Ranking (ReDR) task to meet the requirements for practical distractor retrieval scenarios, in which the models should achieve relatively high performance within an acceptable time. In this research, we develop an end-to-end way based on Dual-Encoders framework to solve ReDR task. Besides, we propose multiple kinds of relevance scores including Context-Context, Context-Distractor and Distractor-Distractor, which have been employed in two strategies: 1) Multi-source Soft Labeling (MSL), which assigns each candidate an appropriate soft label from multiple kinds of relevance scores to better simulate the sample distribution of ReDR task; 2) Multi-Source Hard Negative Sampling (MHNS), which selects the hard negative samples according to multiple kinds of relevance scores and further distinguishes the difference between them and the positive samples. The extensive experiments on two well-known MCQ benchmarks have proven the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Susan采纳,获得10
刚刚
耍酷天寿发布了新的文献求助10
1秒前
Owen应助XT采纳,获得10
1秒前
bmyy完成签到,获得积分10
2秒前
2秒前
烟花应助jzt12138采纳,获得10
2秒前
嗯啊完成签到,获得积分10
3秒前
陈陈完成签到,获得积分10
3秒前
3秒前
ZTB完成签到,获得积分10
3秒前
邓佳乐完成签到,获得积分10
3秒前
归于晏发布了新的文献求助10
5秒前
5秒前
6秒前
iNk应助ZTB采纳,获得10
6秒前
7秒前
精灵梦完成签到,获得积分10
7秒前
无花果应助文静的听荷采纳,获得10
8秒前
橙子发布了新的文献求助10
9秒前
Merryonwine完成签到,获得积分10
9秒前
1111发布了新的文献求助10
9秒前
hhl完成签到,获得积分10
9秒前
栀子花的梦完成签到,获得积分20
10秒前
10秒前
小垚完成签到,获得积分10
10秒前
10秒前
回笼觉教主完成签到,获得积分10
11秒前
bz发布了新的文献求助10
11秒前
11秒前
情怀应助孙冲采纳,获得10
11秒前
11秒前
上上上完成签到,获得积分10
13秒前
虚幻无颜发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
didi完成签到,获得积分10
14秒前
Hello应助YHF2采纳,获得10
14秒前
15秒前
自觉志泽完成签到,获得积分10
16秒前
Chnious发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108