Response speed enhanced fine-grained knowledge tracing: A multi-task learning perspective

计算机科学 可解释性 追踪 机器学习 任务(项目管理) 人工智能 跟踪(心理语言学) 多任务学习 编码器 潜变量 一致性(知识库) 透视图(图形) 操作系统 语言学 哲学 经济 管理
作者
Tao Huang,Shengze Hu,Huali Yang,Jing Geng,Zhifei Li,Zhuoran Xu,Xinjia Ou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122107-122107 被引量:7
标识
DOI:10.1016/j.eswa.2023.122107
摘要

The primary objective of knowledge tracing (KT) is to trace learners' changing knowledge states and predict their future performance by analyzing their learning trajectories. One of the fundamental assumptions underpinning KT is that estimating knowledge states is roughly equivalent to predicting future performance. However, this assumption has not been extensively explored in most studies, particularly in relation to the consistency between observable performance and latent knowledge state. To address this challenge, we propose a novel response speed enhanced fine-grained knowledge tracing (FKT) method. FKT leverages response speed through response time and integrates speed prediction as an additional task within a multi-task learning framework. Through this framework, FKT can separate representations of different knowledge state in the feature space, thereby facilitating fine-grained knowledge tracing. Moreover, we divide the task of predicting learner performance into three procedures: obtaining historical knowledge state, inferring future latent traits, and forecasting future performance. To this end, we formalize each learner's response interaction as a time cell and develop an encoder–decoder–predictor framework for KT. To enhance the accuracy of performance prediction, we introduce a time-distance attention mechanism and knowledge proficiency component and provide two multi-task objective functions. Our experimental results on four real-world datasets demonstrate the superiority of future performance prediction and good interpretability of FKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李延辉发布了新的文献求助10
1秒前
吕敬瑶完成签到,获得积分10
1秒前
2秒前
累了就休息不是放弃完成签到,获得积分10
2秒前
有足量NaCl发布了新的文献求助10
2秒前
木头木子发布了新的文献求助10
3秒前
木子完成签到,获得积分10
3秒前
4秒前
Hoyshin应助ys采纳,获得20
4秒前
科研通AI5应助4564321采纳,获得30
4秒前
5秒前
6秒前
烟花应助温茶采纳,获得10
7秒前
Garnieta完成签到,获得积分10
7秒前
7秒前
Amy完成签到,获得积分10
7秒前
胖咚咚完成签到 ,获得积分10
9秒前
在水一方应助关复观采纳,获得10
9秒前
mingking发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助30
10秒前
LH发布了新的文献求助10
10秒前
完美世界应助故意的鸿涛采纳,获得10
10秒前
酷波er应助小羊采纳,获得10
10秒前
11秒前
12秒前
西兰花发布了新的文献求助10
12秒前
13秒前
13秒前
陈饱饱完成签到,获得积分10
13秒前
完美世界应助鲸海采纳,获得10
13秒前
13秒前
王镇完成签到,获得积分10
13秒前
郑梓龙发布了新的文献求助10
14秒前
15秒前
16秒前
宣宣完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025