Response speed enhanced fine-grained knowledge tracing: A multi-task learning perspective

计算机科学 可解释性 追踪 机器学习 任务(项目管理) 人工智能 跟踪(心理语言学) 多任务学习 编码器 潜变量 一致性(知识库) 透视图(图形) 操作系统 语言学 哲学 经济 管理
作者
Tao Huang,Shengze Hu,Huali Yang,Jing Geng,Zhifei Li,Zhuoran Xu,Xinjia Ou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122107-122107 被引量:7
标识
DOI:10.1016/j.eswa.2023.122107
摘要

The primary objective of knowledge tracing (KT) is to trace learners' changing knowledge states and predict their future performance by analyzing their learning trajectories. One of the fundamental assumptions underpinning KT is that estimating knowledge states is roughly equivalent to predicting future performance. However, this assumption has not been extensively explored in most studies, particularly in relation to the consistency between observable performance and latent knowledge state. To address this challenge, we propose a novel response speed enhanced fine-grained knowledge tracing (FKT) method. FKT leverages response speed through response time and integrates speed prediction as an additional task within a multi-task learning framework. Through this framework, FKT can separate representations of different knowledge state in the feature space, thereby facilitating fine-grained knowledge tracing. Moreover, we divide the task of predicting learner performance into three procedures: obtaining historical knowledge state, inferring future latent traits, and forecasting future performance. To this end, we formalize each learner's response interaction as a time cell and develop an encoder–decoder–predictor framework for KT. To enhance the accuracy of performance prediction, we introduce a time-distance attention mechanism and knowledge proficiency component and provide two multi-task objective functions. Our experimental results on four real-world datasets demonstrate the superiority of future performance prediction and good interpretability of FKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助天真茗采纳,获得150
刚刚
刚刚
1秒前
2秒前
2秒前
gbw123完成签到,获得积分10
2秒前
深情安青应助于彤采纳,获得10
3秒前
Tuffy_Du发布了新的文献求助10
3秒前
星辰大海应助自由白风采纳,获得10
3秒前
3秒前
32发布了新的文献求助10
4秒前
zz发布了新的文献求助10
5秒前
5秒前
不管啦发布了新的文献求助20
5秒前
6秒前
瘦瘦白昼完成签到,获得积分10
6秒前
7秒前
7秒前
998发布了新的文献求助10
8秒前
舒适的曼彤完成签到,获得积分10
8秒前
小鱼发布了新的文献求助10
8秒前
aliu完成签到,获得积分10
9秒前
9秒前
大个应助orang采纳,获得10
9秒前
Lily完成签到,获得积分10
10秒前
杰克开膛手完成签到,获得积分10
10秒前
星星完成签到,获得积分20
10秒前
KeCoKeLe完成签到,获得积分10
11秒前
Tao完成签到,获得积分10
11秒前
11秒前
11秒前
emm完成签到,获得积分10
12秒前
jjjjjj发布了新的文献求助10
12秒前
浪吃完成签到,获得积分10
13秒前
小鱼儿完成签到,获得积分10
13秒前
gc发布了新的文献求助10
13秒前
科目三应助博修采纳,获得10
13秒前
沉静亿先完成签到,获得积分10
14秒前
fixit发布了新的文献求助10
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149