Geometric Boundary Guided Feature Fusion and Spatial-Semantic Context Aggregation for Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 背景(考古学) 分割 特征(语言学) 空间语境意识 模式识别(心理学) 边界(拓扑) 像素 光学(聚焦) 一致性(知识库) 图像分割 计算机视觉 数学 地理 数学分析 语言学 哲学 物理 考古 光学
作者
Yupei Wang,Haoran Zhang,Yongkang Hu,Xiaoxing Hu,Liang Chen,Shanqing Hu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6373-6385 被引量:5
标识
DOI:10.1109/tip.2023.3326400
摘要

Semantic segmentation of remote sensing images aims to achieve pixel-level semantic category assignment for input images. This task has achieved significant advances with the rapid development of deep neural network. Most current methods mainly focus on effectively fusing the low-level spatial details and high-level semantic cues. Other methods also propose to incorporate the boundary guidance to obtain boundary preserving segmentation. However, current methods treat the multi-level feature fusion and the boundary guidance as two separate tasks, resulting in sub-optimal solutions. Moreover, due to the large inter-class difference and small intra-class consistency within remote sensing images, current methods often fail to accurately aggregate the long-range contextual cues. These critical issues make current methods fail to achieve satisfactory segmentation predictions, which severely hinder downstream applications. To this end, we first propose a novel boundary guided multi-level feature fusion module to seamlessly incorporate the boundary guidance into the multi-level feature fusion operations. Meanwhile, in order to further enforce the boundary guidance effectively, we employ a geometric-similarity-based boundary loss function. In this way, under the explicit guidance of boundary constraint, the multi-level features are effectively combined. In addition, a channel-wise correlation guided spatial-semantic context aggregation module is presented to effectively aggregate the contextual cues. In this way, subtle but meaningful contextual cues about pixel-wise spatial context and channel-wise semantic correlation are effectively aggregated, leading to spatial-semantic context aggregation. Extensive qualitative and quantitative experimental results on ISPRS Vaihingen and GaoFen-2 datasets demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙汁完成签到 ,获得积分10
刚刚
GGU应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
rosalieshi应助科研通管家采纳,获得30
1秒前
Akim应助科研通管家采纳,获得10
1秒前
无名老大应助科研通管家采纳,获得30
1秒前
英姑应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
无名老大应助科研通管家采纳,获得30
1秒前
一一应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
GGU应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
3秒前
朴素元珊发布了新的文献求助30
3秒前
wlm完成签到,获得积分10
3秒前
3秒前
FXT完成签到 ,获得积分10
4秒前
4秒前
思源应助猛男航采纳,获得10
5秒前
京客家发布了新的文献求助10
6秒前
斯文败类应助hao采纳,获得10
6秒前
7秒前
开朗的千柔完成签到,获得积分20
7秒前
7秒前
咕噜快逃完成签到,获得积分10
8秒前
苏苏发布了新的文献求助10
8秒前
errui发布了新的文献求助20
8秒前
兜兜完成签到,获得积分10
9秒前
自觉向雪发布了新的文献求助30
10秒前
子车茗应助hou2012采纳,获得30
10秒前
10秒前
香蕉觅云应助快乐的秋翠采纳,获得10
10秒前
FashionBoy应助WittingGU采纳,获得10
10秒前
Narcissus完成签到,获得积分10
12秒前
一一应助Guo采纳,获得10
13秒前
lpz完成签到 ,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459588
求助须知:如何正确求助?哪些是违规求助? 3053915
关于积分的说明 9039460
捐赠科研通 2743281
什么是DOI,文献DOI怎么找? 1504749
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694685