Deep learning and targeted metabolomics‐based monitoring of chewing insects in tea plants and screening defense compounds

代谢组学 生物 生物信息学
作者
Yifan Chen,Zhenyu Wang,Tian Gao,Yipeng Huang,Tongtong Li,Xiaolan Jiang,Yajun Liu,Liping Gao,Tao Xia
出处
期刊:Plant Cell and Environment [Wiley]
卷期号:47 (2): 698-713 被引量:2
标识
DOI:10.1111/pce.14749
摘要

Abstract Tea is an important cash crop that is often consumed by chewing pests, resulting in reduced yields and economic losses. It is important to establish a method to quickly identify the degree of damage to tea plants caused by leaf‐eating insects and screen green control compounds. This study was performed through the combination of deep learning and targeted metabolomics, in vitro feeding experiment, enzymic analysis and transient genetic transformation. A small target damage detection model based on YOLOv5 with Transformer Prediction Head (TPH‐YOLOv5) algorithm for the tea canopy level was established. Orthogonal partial least squares (OPLS) was used to analyze the correlation between the degree of damage and the phenolic metabolites. A potential defensive compound, (‐)‐epicatechin‐3‐ O ‐caffeoate (EC‐CA), was screened. In vitro feeding experiments showed that compared with EC and epicatechin gallate, Ectropis grisescens exhibited more significant antifeeding against EC‐CA. In vitro enzymatic experiments showed that the hydroxycinnamoyl transferase (CsHCTs) recombinant protein has substrate promiscuity and can catalyze the synthesis of EC‐CA. Transient overexpression of CsHCT s in tea leaves effectively reduced the degree of damage to tea leaves. This study provides important reference values and application prospects for the effective monitoring of pests in tea gardens and screening of green chemical control substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rye发布了新的文献求助30
刚刚
平常安雁完成签到 ,获得积分10
刚刚
smmu008完成签到,获得积分10
1秒前
Johnny完成签到,获得积分10
1秒前
BJ_whc完成签到,获得积分10
2秒前
一路狂奔等不了完成签到 ,获得积分10
2秒前
3秒前
SciGPT应助tion66采纳,获得30
3秒前
仙棠完成签到 ,获得积分10
3秒前
TCR完成签到,获得积分10
3秒前
JayChou发布了新的文献求助10
3秒前
MrH完成签到,获得积分10
4秒前
CipherSage应助WEI采纳,获得30
4秒前
chloe发布了新的文献求助10
4秒前
果果瑞宁发布了新的文献求助10
4秒前
KUlianshu发布了新的文献求助10
5秒前
hans完成签到,获得积分10
5秒前
00完成签到,获得积分10
5秒前
6秒前
ywzwszl完成签到,获得积分10
6秒前
pluto应助尼克狐尼克采纳,获得20
6秒前
优雅盼海完成签到 ,获得积分20
7秒前
创创完成签到,获得积分10
7秒前
ermu给葡萄成熟时的求助进行了留言
7秒前
郭翔完成签到,获得积分10
8秒前
韶邑完成签到,获得积分10
8秒前
Barry完成签到,获得积分10
8秒前
chen发布了新的文献求助10
8秒前
8秒前
道一完成签到,获得积分10
9秒前
精明芷巧发布了新的文献求助10
9秒前
虚心初兰完成签到,获得积分20
9秒前
xxiix完成签到,获得积分10
10秒前
Vaibhav完成签到,获得积分10
10秒前
11秒前
Andrew完成签到,获得积分0
11秒前
西北射天狼完成签到,获得积分10
11秒前
Ehgnix发布了新的文献求助10
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729599
求助须知:如何正确求助?哪些是违规求助? 3274630
关于积分的说明 9987565
捐赠科研通 2989918
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748200