Closely arranged inshore ship detection using a bi-directional attention feature pyramid network

棱锥(几何) 计算机科学 特征(语言学) 人工智能 合成孔径雷达 分割 模式识别(心理学) 计算机视觉 比例(比率) 特征提取 遥感 地质学 地理 地图学 数学 哲学 语言学 几何学
作者
Hao Guo,Dongbing Gu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (22): 7106-7125 被引量:3
标识
DOI:10.1080/01431161.2023.2277166
摘要

The detection of inshore ships in Synthetic Aperture Radar (SAR) images is seriously disturbed by shore buildings, especially for closely arranged inshore ships whose appearance is similar when compared with detection of deep-sea ships. There are many interference factors such as speckle noise, cross sidelobes, and defocusing in SAR images. These factors can seriously interfere with feature extraction, and the traditional Fully Convolutional One-Stage (FCOS) network often cannot effectively distinguish small-scale ships from backgrounds. Additionally, for closely arranged inshore ships, missed detections and inaccurate positioning often occur. In this paper, a method of inshore ship detection based on Bi-directional Attention Feature Pyramid Network (BAFPN) is proposed. In order to improve the detection ability of small-scale ships, the BAFPN is based on the FCOS network, which connects a Convolutional Block Attention Module (CBAM) to each feature map of the pyramid and can extract rich semantic features. Then, the idea from Path-Aggregation Network (PANet) is adopted to splice a bottom-up pyramid structure behind the original pyramid structure, further highlighting the features of different scales and improving the ability of the network to accurately locate ships under complex backgrounds, thereby avoiding missed detections in closely arranged inshore ship detection. Finally, a weighted feature fusion method is proposed, which makes the feature information extracted from the feature map have different focuses and can improve the accuracy of ship detection. Experiments on SAR image ship datasets show that the mAP for the SSDD and HRSID reached 0.902 and 0.839 respectively. The proposed method can effectively improve the ship positioning accuracy while maintaining a fast detection speed, and achieves better results for ship detection under complex background.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助科研毛毛从采纳,获得10
1秒前
Aceawei完成签到,获得积分10
1秒前
朴素的荠完成签到,获得积分10
2秒前
心随风飞完成签到,获得积分10
3秒前
3秒前
迟迟完成签到 ,获得积分10
4秒前
4秒前
cc完成签到,获得积分10
5秒前
冷酷的墨镜完成签到,获得积分10
5秒前
陈昇完成签到 ,获得积分10
5秒前
张文静完成签到,获得积分10
5秒前
瘦瘦的铅笔完成签到 ,获得积分10
6秒前
bjr完成签到 ,获得积分10
6秒前
光亮若翠完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
研友_Z3342Z完成签到,获得积分10
9秒前
爆米花应助peekaboo采纳,获得10
9秒前
唐僧肉臊子面完成签到,获得积分10
10秒前
甲第完成签到 ,获得积分10
10秒前
油麦菜完成签到 ,获得积分10
10秒前
欣慰外绣完成签到,获得积分10
11秒前
阎听筠完成签到 ,获得积分10
12秒前
任性的凡完成签到,获得积分10
13秒前
仲夏完成签到,获得积分10
13秒前
13秒前
dounai完成签到,获得积分10
14秒前
511完成签到 ,获得积分10
15秒前
夜信完成签到,获得积分10
16秒前
16秒前
17秒前
Xv完成签到,获得积分10
17秒前
zxp完成签到,获得积分10
18秒前
积极慕梅应助鱼鱼鱼采纳,获得10
18秒前
凯蒂晗晗完成签到,获得积分20
19秒前
鑫光熠熠完成签到 ,获得积分10
20秒前
Lvhao完成签到,获得积分10
21秒前
光亮面包完成签到 ,获得积分10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798221
关于积分的说明 7827159
捐赠科研通 2454808
什么是DOI,文献DOI怎么找? 1306480
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565