亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural networks for studying heat transfer in porous media

多孔介质 热传导 热导率 传热 热流密度 人工神经网络 工作(物理) 机器学习 计算机科学 人工智能 物理 材料科学 机械 多孔性 热力学 复合材料
作者
Jiaxuan Xu,Han Wei,Hua Bao
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:217: 124671-124671 被引量:15
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124671
摘要

Numerous efforts have been devoted to studying heat transfer problems in porous media. Physics-based models, numerical methods and experiments are commonly adopted to obtain the temperature and heat flux fields, along with effective thermophysical properties like effective thermal conductivity for heat conduction, which exert significant impact on analyzing the heat transfer efficiency in porous systems. Recently, using data-driven machine learning methods to predict temperature/heat flux fields and effective thermal conductivity of porous media has gained attention, demonstrating the potential to achieve higher accuracy than physics-based models while requiring less computational time than numerical methods. However, machine learning approaches are commonly restricted by the requirement for sufficient labeled training data, which can be difficult and time-consuming to acquire. In this work, we apply physics-informed neural networks to investigate heat conduction in porous media. We show that, without any labeled training data, accurate predictions for temperature/heat flux fields in porous media can be achieved. The obtained effective thermal conductivity values for an ensemble of porous media samples have an average relative error of only 2.49%. Compared with numerical calculations, a computation acceleration of 5 orders of magnitude has been achieved. Compared with data-driven machine learning methods, this method offers enhanced flexibility since no labeled data is required. Furthermore, we also illustrate that physics-informed neural networks can be easily extended to predict nonlinear heat conduction in porous media. Our work demonstrates that physics-informed neural networks are promising tools for studying heat conduction problems and can also be possibly extended to study other complex heat transfer problems in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助starry采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
华仔应助巫马小霜采纳,获得10
9秒前
tuanheqi完成签到,获得积分0
11秒前
18秒前
21秒前
巫马小霜发布了新的文献求助10
24秒前
程风破浪发布了新的文献求助10
26秒前
科研那些年完成签到,获得积分10
34秒前
35秒前
花花521发布了新的文献求助20
40秒前
53秒前
1分钟前
1分钟前
duanduan123发布了新的文献求助10
1分钟前
starry发布了新的文献求助10
1分钟前
乐乐应助duanduan123采纳,获得10
1分钟前
1分钟前
yyllcc完成签到 ,获得积分10
1分钟前
日常搬砖发布了新的文献求助10
1分钟前
1分钟前
Akim应助日常搬砖采纳,获得10
1分钟前
YifanWang应助yyllcc采纳,获得10
1分钟前
Panther完成签到,获得积分10
1分钟前
冷淡芝麻完成签到 ,获得积分10
2分钟前
2分钟前
连衣裙完成签到 ,获得积分20
2分钟前
Hayat应助科研通管家采纳,获得10
2分钟前
2分钟前
ZXD1989完成签到 ,获得积分10
2分钟前
某人二号完成签到,获得积分0
2分钟前
暗号完成签到 ,获得积分10
2分钟前
饱满跳跳糖完成签到,获得积分10
2分钟前
2分钟前
慕斯完成签到,获得积分10
2分钟前
漠北发布了新的文献求助10
2分钟前
2分钟前
老王家的二姑娘完成签到 ,获得积分10
2分钟前
monned完成签到 ,获得积分10
2分钟前
佳芸完成签到,获得积分10
2分钟前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130137
求助须知:如何正确求助?哪些是违规求助? 2780920
关于积分的说明 7750401
捐赠科研通 2436101
什么是DOI,文献DOI怎么找? 1294543
科研通“疑难数据库(出版商)”最低求助积分说明 623716
版权声明 600570