Physics-informed neural networks for studying heat transfer in porous media

多孔介质 热传导 热导率 传热 热流密度 人工神经网络 工作(物理) 机器学习 计算机科学 人工智能 物理 材料科学 机械 多孔性 热力学 复合材料
作者
Jiaxuan Xu,Han Wei,Hua Bao
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:217: 124671-124671 被引量:30
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124671
摘要

Numerous efforts have been devoted to studying heat transfer problems in porous media. Physics-based models, numerical methods and experiments are commonly adopted to obtain the temperature and heat flux fields, along with effective thermophysical properties like effective thermal conductivity for heat conduction, which exert significant impact on analyzing the heat transfer efficiency in porous systems. Recently, using data-driven machine learning methods to predict temperature/heat flux fields and effective thermal conductivity of porous media has gained attention, demonstrating the potential to achieve higher accuracy than physics-based models while requiring less computational time than numerical methods. However, machine learning approaches are commonly restricted by the requirement for sufficient labeled training data, which can be difficult and time-consuming to acquire. In this work, we apply physics-informed neural networks to investigate heat conduction in porous media. We show that, without any labeled training data, accurate predictions for temperature/heat flux fields in porous media can be achieved. The obtained effective thermal conductivity values for an ensemble of porous media samples have an average relative error of only 2.49%. Compared with numerical calculations, a computation acceleration of 5 orders of magnitude has been achieved. Compared with data-driven machine learning methods, this method offers enhanced flexibility since no labeled data is required. Furthermore, we also illustrate that physics-informed neural networks can be easily extended to predict nonlinear heat conduction in porous media. Our work demonstrates that physics-informed neural networks are promising tools for studying heat conduction problems and can also be possibly extended to study other complex heat transfer problems in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lin发布了新的文献求助10
2秒前
tmpstlml完成签到,获得积分10
2秒前
LUNWENREQUEST完成签到,获得积分20
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得30
3秒前
111发布了新的文献求助10
4秒前
keyanlv完成签到,获得积分10
4秒前
富贵儿发布了新的文献求助10
6秒前
冯度翩翩完成签到,获得积分10
6秒前
sweetbearm应助健壮的涑采纳,获得10
6秒前
村里傻小子完成签到,获得积分20
6秒前
田様应助Khr1stINK采纳,获得10
7秒前
傲娇的凡旋应助小周采纳,获得10
8秒前
潇潇潇完成签到 ,获得积分10
8秒前
9秒前
英俊的铭应助XShu采纳,获得10
10秒前
Hello应助一只大肥猫采纳,获得10
11秒前
allyceacheng完成签到,获得积分10
11秒前
科研通AI5应助phd采纳,获得10
12秒前
12秒前
WTaMi完成签到 ,获得积分10
12秒前
zoe发布了新的文献求助10
12秒前
Owen应助无奈的酒窝采纳,获得10
13秒前
14秒前
16秒前
16秒前
16秒前
科研通AI5应助wangyanwxy采纳,获得10
17秒前
36456657应助豆dou采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808