Physics-informed neural networks for studying heat transfer in porous media

多孔介质 热传导 热导率 传热 热流密度 人工神经网络 工作(物理) 机器学习 计算机科学 人工智能 物理 材料科学 机械 多孔性 热力学 复合材料
作者
Jiaxuan Xu,Han Wei,Hua Bao
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:217: 124671-124671 被引量:30
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124671
摘要

Numerous efforts have been devoted to studying heat transfer problems in porous media. Physics-based models, numerical methods and experiments are commonly adopted to obtain the temperature and heat flux fields, along with effective thermophysical properties like effective thermal conductivity for heat conduction, which exert significant impact on analyzing the heat transfer efficiency in porous systems. Recently, using data-driven machine learning methods to predict temperature/heat flux fields and effective thermal conductivity of porous media has gained attention, demonstrating the potential to achieve higher accuracy than physics-based models while requiring less computational time than numerical methods. However, machine learning approaches are commonly restricted by the requirement for sufficient labeled training data, which can be difficult and time-consuming to acquire. In this work, we apply physics-informed neural networks to investigate heat conduction in porous media. We show that, without any labeled training data, accurate predictions for temperature/heat flux fields in porous media can be achieved. The obtained effective thermal conductivity values for an ensemble of porous media samples have an average relative error of only 2.49%. Compared with numerical calculations, a computation acceleration of 5 orders of magnitude has been achieved. Compared with data-driven machine learning methods, this method offers enhanced flexibility since no labeled data is required. Furthermore, we also illustrate that physics-informed neural networks can be easily extended to predict nonlinear heat conduction in porous media. Our work demonstrates that physics-informed neural networks are promising tools for studying heat conduction problems and can also be possibly extended to study other complex heat transfer problems in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐Doctor发布了新的文献求助10
刚刚
CodeCraft应助负蕲采纳,获得10
2秒前
3秒前
3秒前
诸葛醉薇完成签到,获得积分10
4秒前
尼克尼克你好完成签到 ,获得积分10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得50
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
暴躁小鸟完成签到,获得积分10
5秒前
ED应助科研通管家采纳,获得10
5秒前
坦率的匪应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
5秒前
坦率的匪应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
6秒前
木木应助科研通管家采纳,获得10
6秒前
Owen应助guozizi采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
尼克尼克你好关注了科研通微信公众号
7秒前
Charles完成签到,获得积分10
7秒前
8秒前
Tethys发布了新的文献求助10
8秒前
传奇3应助唐Doctor采纳,获得10
10秒前
纳斯达克发布了新的文献求助10
10秒前
11秒前
善学以致用应助dongdong采纳,获得10
11秒前
13秒前
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028