Physics-informed neural networks for studying heat transfer in porous media

多孔介质 热传导 热导率 传热 热流密度 人工神经网络 工作(物理) 机器学习 计算机科学 人工智能 物理 材料科学 机械 多孔性 热力学 复合材料
作者
Jiaxuan Xu,Han Wei,Hua Bao
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:217: 124671-124671 被引量:30
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124671
摘要

Numerous efforts have been devoted to studying heat transfer problems in porous media. Physics-based models, numerical methods and experiments are commonly adopted to obtain the temperature and heat flux fields, along with effective thermophysical properties like effective thermal conductivity for heat conduction, which exert significant impact on analyzing the heat transfer efficiency in porous systems. Recently, using data-driven machine learning methods to predict temperature/heat flux fields and effective thermal conductivity of porous media has gained attention, demonstrating the potential to achieve higher accuracy than physics-based models while requiring less computational time than numerical methods. However, machine learning approaches are commonly restricted by the requirement for sufficient labeled training data, which can be difficult and time-consuming to acquire. In this work, we apply physics-informed neural networks to investigate heat conduction in porous media. We show that, without any labeled training data, accurate predictions for temperature/heat flux fields in porous media can be achieved. The obtained effective thermal conductivity values for an ensemble of porous media samples have an average relative error of only 2.49%. Compared with numerical calculations, a computation acceleration of 5 orders of magnitude has been achieved. Compared with data-driven machine learning methods, this method offers enhanced flexibility since no labeled data is required. Furthermore, we also illustrate that physics-informed neural networks can be easily extended to predict nonlinear heat conduction in porous media. Our work demonstrates that physics-informed neural networks are promising tools for studying heat conduction problems and can also be possibly extended to study other complex heat transfer problems in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高的宛亦完成签到,获得积分10
2秒前
斯文明杰发布了新的文献求助10
3秒前
高兴发箍完成签到,获得积分10
3秒前
badabada发布了新的文献求助10
4秒前
5秒前
Michael-布莱恩特完成签到,获得积分10
5秒前
小马甲应助含蓄老太采纳,获得10
5秒前
chenlixin完成签到,获得积分10
7秒前
真谛完成签到,获得积分10
7秒前
甜美的芷完成签到,获得积分10
8秒前
11秒前
真谛发布了新的文献求助10
11秒前
勤恳的凌文应助kRAY采纳,获得10
11秒前
科研通AI5应助kRAY采纳,获得10
11秒前
细心的梦芝完成签到,获得积分10
11秒前
12秒前
嗯啊完成签到,获得积分10
12秒前
12秒前
爆米花应助thuuu采纳,获得10
12秒前
甜美的芷发布了新的文献求助10
12秒前
14秒前
细心青烟完成签到,获得积分20
14秒前
阴森女公爵完成签到 ,获得积分10
14秒前
15秒前
小鱼发布了新的文献求助10
16秒前
qxz完成签到,获得积分10
16秒前
Zcccjy发布了新的文献求助10
17秒前
wei完成签到,获得积分10
17秒前
科研通AI6应助123yaoyao采纳,获得10
17秒前
17秒前
我不困完成签到,获得积分10
18秒前
18秒前
细心青烟发布了新的文献求助10
18秒前
科研通AI6应助zsgot3采纳,获得10
19秒前
Marshall完成签到 ,获得积分10
19秒前
814791097完成签到,获得积分10
19秒前
苏苏完成签到,获得积分10
20秒前
布偶猫发布了新的文献求助10
21秒前
大模型应助守望者采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033