Physics-informed neural networks for studying heat transfer in porous media

多孔介质 热传导 热导率 传热 热流密度 人工神经网络 工作(物理) 机器学习 计算机科学 人工智能 物理 材料科学 机械 多孔性 热力学 复合材料
作者
Jiaxuan Xu,Han Wei,Hua Bao
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:217: 124671-124671 被引量:30
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124671
摘要

Numerous efforts have been devoted to studying heat transfer problems in porous media. Physics-based models, numerical methods and experiments are commonly adopted to obtain the temperature and heat flux fields, along with effective thermophysical properties like effective thermal conductivity for heat conduction, which exert significant impact on analyzing the heat transfer efficiency in porous systems. Recently, using data-driven machine learning methods to predict temperature/heat flux fields and effective thermal conductivity of porous media has gained attention, demonstrating the potential to achieve higher accuracy than physics-based models while requiring less computational time than numerical methods. However, machine learning approaches are commonly restricted by the requirement for sufficient labeled training data, which can be difficult and time-consuming to acquire. In this work, we apply physics-informed neural networks to investigate heat conduction in porous media. We show that, without any labeled training data, accurate predictions for temperature/heat flux fields in porous media can be achieved. The obtained effective thermal conductivity values for an ensemble of porous media samples have an average relative error of only 2.49%. Compared with numerical calculations, a computation acceleration of 5 orders of magnitude has been achieved. Compared with data-driven machine learning methods, this method offers enhanced flexibility since no labeled data is required. Furthermore, we also illustrate that physics-informed neural networks can be easily extended to predict nonlinear heat conduction in porous media. Our work demonstrates that physics-informed neural networks are promising tools for studying heat conduction problems and can also be possibly extended to study other complex heat transfer problems in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻轻完成签到,获得积分10
2秒前
Orange应助jiaolulu采纳,获得10
2秒前
xcxc完成签到,获得积分10
4秒前
water应助科研通管家采纳,获得50
4秒前
4秒前
默存完成签到,获得积分10
7秒前
风中的金鱼完成签到 ,获得积分10
9秒前
橙汁完成签到,获得积分10
10秒前
普鲁卡因发布了新的文献求助10
13秒前
cora完成签到 ,获得积分10
19秒前
徐伟康完成签到 ,获得积分10
19秒前
Minicoper完成签到,获得积分10
30秒前
科研通AI5应助普鲁卡因采纳,获得10
30秒前
111完成签到 ,获得积分10
30秒前
奥特曼完成签到 ,获得积分10
30秒前
苏苏完成签到,获得积分10
31秒前
大橙子完成签到,获得积分10
31秒前
kelite完成签到 ,获得积分10
32秒前
火星上的雨柏完成签到 ,获得积分10
33秒前
JY完成签到,获得积分10
34秒前
知行合一完成签到 ,获得积分10
34秒前
37秒前
37秒前
笑林完成签到 ,获得积分10
38秒前
wwl完成签到,获得积分10
38秒前
娟娟完成签到 ,获得积分10
39秒前
Hollen完成签到 ,获得积分10
39秒前
janejane发布了新的文献求助10
40秒前
41秒前
32429606完成签到 ,获得积分10
41秒前
42秒前
普鲁卡因发布了新的文献求助10
44秒前
发个15分的完成签到 ,获得积分10
46秒前
46秒前
wellyou发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
51秒前
自由的鹏涛完成签到,获得积分20
54秒前
55秒前
在水一方应助Nayvue采纳,获得10
55秒前
58秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022