ActiveSelfHAR: Incorporating Self-Training Into Active Learning to Improve Cross-Subject Human Activity Recognition

计算机科学 人工智能 杠杆(统计) 活动识别 机器学习 集合(抽象数据类型) 标记数据 领域(数学分析) 训练集 可穿戴计算机 数学 数学分析 嵌入式系统 程序设计语言
作者
Baichun Wei,Chunzhi Yi,Qi Zhang,Haiqi Zhu,Jianfei Zhu,Feng Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2023.3314150
摘要

Deep learning-based human activity recognition (HAR) methods have shown promise in the applications of health internet of things (IoT) and wireless body sensor networks (BSN). However, adapting these methods to new users in real-world scenarios is challenging due to the cross-subject issue. To solve this issue, we propose ActiveSelfHAR, a framework that combines active learning’s benefit of sparsely acquiring informative samples with actual labels and self-training’s benefit of effectively utilizing unlabeled data to adapt the HAR model to the target domain, i.e., the new users. ActiveSelfHAR consists of several key steps. First, we utilize the model from the source domain to select and label the domain invariant samples, forming a self-training set. Second, we leverage the distribution information of the self-training set to identify and annotate samples located around the class boundaries, forming a core set. Third, we augment the core set by considering the spatiotemporal relationships among the samples in the non-self-training set. Finally, we combine the self-training set and augmented core set to construct a diverse training set in the target domain and fine-tune the HAR model. Through leave-one-subject-out validation on three IMU-based datasets and one EMG-based dataset, our method achieves mean HAR accuracies of 95.20%, 82.06%, 89.52%, and 92.82%, respectively. Our method demonstrates similar HAR accuracies to the upper bound, i.e., fine-tuning framework with approximately 1% labeled data of the target dataset, while significantly improving data efficiency and time cost. Our work highlights the potential of implementing user-independent HAR methods into health IoT and BSN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy_完成签到,获得积分10
刚刚
香蕉易形关注了科研通微信公众号
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
慕青应助Yeee采纳,获得10
2秒前
beituo完成签到,获得积分10
3秒前
3秒前
烂漫代曼完成签到,获得积分10
3秒前
ding应助呼呼采纳,获得10
4秒前
yzzzz发布了新的文献求助10
4秒前
4秒前
黄家琪完成签到 ,获得积分10
4秒前
共享精神应助Rain采纳,获得10
4秒前
5秒前
一把过发布了新的文献求助10
5秒前
6秒前
咚咚糖完成签到,获得积分10
6秒前
YY完成签到,获得积分10
7秒前
白白完成签到,获得积分10
8秒前
quan发布了新的文献求助10
8秒前
踏实的无敌完成签到,获得积分10
8秒前
椰树椰汁完成签到,获得积分10
9秒前
Rain完成签到,获得积分10
9秒前
hhhh完成签到,获得积分0
9秒前
芝士发布了新的文献求助10
9秒前
9秒前
十六发布了新的文献求助10
9秒前
9秒前
Lucas应助今天想要吃饭采纳,获得10
9秒前
9秒前
烩面大师发布了新的文献求助10
10秒前
了晨发布了新的文献求助10
10秒前
10秒前
Xk发布了新的文献求助10
11秒前
追寻筮完成签到,获得积分10
11秒前
凉哦哦发布了新的文献求助10
11秒前
11秒前
12秒前
我爱蓝胖子完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582