计算机科学
人工智能
杠杆(统计)
活动识别
机器学习
集合(抽象数据类型)
标记数据
领域(数学分析)
训练集
可穿戴计算机
数学分析
数学
嵌入式系统
程序设计语言
作者
Baichun Wei,Chunzhi Yi,Qi Zhang,Haiqi Zhu,Jianfei Zhu,Feng Jiang
出处
期刊:IEEE Internet of Things Journal
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:: 1-1
被引量:1
标识
DOI:10.1109/jiot.2023.3314150
摘要
Deep learning-based human activity recognition (HAR) methods have shown promise in the applications of health internet of things (IoT) and wireless body sensor networks (BSN). However, adapting these methods to new users in real-world scenarios is challenging due to the cross-subject issue. To solve this issue, we propose ActiveSelfHAR, a framework that combines active learning’s benefit of sparsely acquiring informative samples with actual labels and self-training’s benefit of effectively utilizing unlabeled data to adapt the HAR model to the target domain, i.e., the new users. ActiveSelfHAR consists of several key steps. First, we utilize the model from the source domain to select and label the domain invariant samples, forming a self-training set. Second, we leverage the distribution information of the self-training set to identify and annotate samples located around the class boundaries, forming a core set. Third, we augment the core set by considering the spatiotemporal relationships among the samples in the non-self-training set. Finally, we combine the self-training set and augmented core set to construct a diverse training set in the target domain and fine-tune the HAR model. Through leave-one-subject-out validation on three IMU-based datasets and one EMG-based dataset, our method achieves mean HAR accuracies of 95.20%, 82.06%, 89.52%, and 92.82%, respectively. Our method demonstrates similar HAR accuracies to the upper bound, i.e., fine-tuning framework with approximately 1% labeled data of the target dataset, while significantly improving data efficiency and time cost. Our work highlights the potential of implementing user-independent HAR methods into health IoT and BSN.
科研通智能强力驱动
Strongly Powered by AbleSci AI