亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ActiveSelfHAR: Incorporating Self-Training Into Active Learning to Improve Cross-Subject Human Activity Recognition

计算机科学 人工智能 杠杆(统计) 活动识别 机器学习 集合(抽象数据类型) 标记数据 领域(数学分析) 训练集 可穿戴计算机 数学分析 数学 嵌入式系统 程序设计语言
作者
Baichun Wei,Chunzhi Yi,Qi Zhang,Haiqi Zhu,Jianfei Zhu,Feng Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2023.3314150
摘要

Deep learning-based human activity recognition (HAR) methods have shown promise in the applications of health internet of things (IoT) and wireless body sensor networks (BSN). However, adapting these methods to new users in real-world scenarios is challenging due to the cross-subject issue. To solve this issue, we propose ActiveSelfHAR, a framework that combines active learning’s benefit of sparsely acquiring informative samples with actual labels and self-training’s benefit of effectively utilizing unlabeled data to adapt the HAR model to the target domain, i.e., the new users. ActiveSelfHAR consists of several key steps. First, we utilize the model from the source domain to select and label the domain invariant samples, forming a self-training set. Second, we leverage the distribution information of the self-training set to identify and annotate samples located around the class boundaries, forming a core set. Third, we augment the core set by considering the spatiotemporal relationships among the samples in the non-self-training set. Finally, we combine the self-training set and augmented core set to construct a diverse training set in the target domain and fine-tune the HAR model. Through leave-one-subject-out validation on three IMU-based datasets and one EMG-based dataset, our method achieves mean HAR accuracies of 95.20%, 82.06%, 89.52%, and 92.82%, respectively. Our method demonstrates similar HAR accuracies to the upper bound, i.e., fine-tuning framework with approximately 1% labeled data of the target dataset, while significantly improving data efficiency and time cost. Our work highlights the potential of implementing user-independent HAR methods into health IoT and BSN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xky200125完成签到 ,获得积分10
3秒前
我是老大应助wq采纳,获得10
8秒前
28秒前
cling发布了新的文献求助10
34秒前
35秒前
多乐多发布了新的文献求助10
44秒前
45秒前
Haim4完成签到,获得积分20
48秒前
量子星尘发布了新的文献求助10
54秒前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
木棉发布了新的文献求助10
2分钟前
2分钟前
无极微光应助刘言采纳,获得20
2分钟前
凡尔赛老痘完成签到,获得积分10
2分钟前
guoguo82完成签到,获得积分10
2分钟前
2分钟前
开放道天发布了新的文献求助10
2分钟前
2分钟前
2分钟前
赘婿应助Mystic采纳,获得10
2分钟前
2分钟前
3分钟前
Mystic发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
计划完成签到,获得积分10
3分钟前
msn00完成签到 ,获得积分10
3分钟前
谢桓完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
cy0824完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664293
求助须知:如何正确求助?哪些是违规求助? 4860543
关于积分的说明 15107502
捐赠科研通 4822814
什么是DOI,文献DOI怎么找? 2581760
邀请新用户注册赠送积分活动 1535979
关于科研通互助平台的介绍 1494205