ActiveSelfHAR: Incorporating Self-Training Into Active Learning to Improve Cross-Subject Human Activity Recognition

计算机科学 人工智能 杠杆(统计) 活动识别 机器学习 集合(抽象数据类型) 标记数据 领域(数学分析) 训练集 可穿戴计算机 数学分析 数学 嵌入式系统 程序设计语言
作者
Baichun Wei,Chunzhi Yi,Qi Zhang,Haiqi Zhu,Jianfei Zhu,Feng Jiang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2023.3314150
摘要

Deep learning-based human activity recognition (HAR) methods have shown promise in the applications of health internet of things (IoT) and wireless body sensor networks (BSN). However, adapting these methods to new users in real-world scenarios is challenging due to the cross-subject issue. To solve this issue, we propose ActiveSelfHAR, a framework that combines active learning’s benefit of sparsely acquiring informative samples with actual labels and self-training’s benefit of effectively utilizing unlabeled data to adapt the HAR model to the target domain, i.e., the new users. ActiveSelfHAR consists of several key steps. First, we utilize the model from the source domain to select and label the domain invariant samples, forming a self-training set. Second, we leverage the distribution information of the self-training set to identify and annotate samples located around the class boundaries, forming a core set. Third, we augment the core set by considering the spatiotemporal relationships among the samples in the non-self-training set. Finally, we combine the self-training set and augmented core set to construct a diverse training set in the target domain and fine-tune the HAR model. Through leave-one-subject-out validation on three IMU-based datasets and one EMG-based dataset, our method achieves mean HAR accuracies of 95.20%, 82.06%, 89.52%, and 92.82%, respectively. Our method demonstrates similar HAR accuracies to the upper bound, i.e., fine-tuning framework with approximately 1% labeled data of the target dataset, while significantly improving data efficiency and time cost. Our work highlights the potential of implementing user-independent HAR methods into health IoT and BSN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助娜行采纳,获得10
1秒前
霉小欧给mito的求助进行了留言
2秒前
投必快业必毕完成签到,获得积分10
2秒前
慌慌发布了新的文献求助10
4秒前
田格本发布了新的文献求助10
4秒前
无名老大应助支雨泽采纳,获得20
4秒前
4秒前
6秒前
科目三应助xjfsky采纳,获得10
7秒前
8秒前
lone623完成签到 ,获得积分10
9秒前
serayu123完成签到,获得积分10
9秒前
9秒前
yyy完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
light完成签到 ,获得积分10
12秒前
LZJ发布了新的文献求助10
12秒前
雪飞杨完成签到 ,获得积分10
13秒前
13秒前
凡而不庸应助袁向薇采纳,获得10
13秒前
娜行发布了新的文献求助10
14秒前
jy发布了新的文献求助10
15秒前
笨笨羿发布了新的文献求助10
15秒前
忧郁水彤发布了新的文献求助10
16秒前
16秒前
屈苞络发布了新的文献求助10
16秒前
16秒前
阿冰发布了新的文献求助10
16秒前
17秒前
17秒前
9527完成签到 ,获得积分10
18秒前
林深完成签到,获得积分10
18秒前
lzengchan@163发布了新的文献求助10
18秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Inorganic Chemistry 5th Edition Catherine Housecroft 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357312
求助须知:如何正确求助?哪些是违规求助? 2980824
关于积分的说明 8696311
捐赠科研通 2662479
什么是DOI,文献DOI怎么找? 1457877
科研通“疑难数据库(出版商)”最低求助积分说明 674902
邀请新用户注册赠送积分活动 665938