已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid deep learning framework for unsteady periodic flow field reconstruction based on frequency and residual learning

残余物 快速傅里叶变换 算法 计算机科学 领域(数学) 离散傅里叶变换(通用) 流量(数学) 傅里叶变换 数学 短时傅里叶变换 傅里叶分析 数学分析 几何学 纯数学
作者
Xingwen Peng,Xingchen Li,Xiaoqian Chen,Xianqi Chen,Wen Yao
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:141: 108539-108539 被引量:3
标识
DOI:10.1016/j.ast.2023.108539
摘要

Reconstructing a complete flow field from limited sensor measurement is quite essential for state evaluation, optimization, monitoring, and control of the flow system. Unsteady periodic flow, as a widespread phenomenon in science and engineering, attracts in-depth research over decades. Deep learning has been employed in flow field reconstruction, whereas the accurate estimation for the unsteady flow field with strong nonlinearity is still difficult. To address this problem, we propose a hybrid deep learning framework that incorporates frequency and residual learning to accurately reconstruct an unsteady periodic flow field from limited sensor measurement. First, to extract the frequency features, the historical flow field data is decomposed into different modes with different frequencies named frequency modes via fast Fourier transform (FFT). Next, we construct a hybrid deep neural network framework consisting of an inverse fast Fourier transform (IFFT) block and a residual block. The IFFT block maps sensor measurements to frequency mode temporal coefficients, which are multiplied with frequency modes to recover an IFFT field. Meanwhile, the residual block adaptively generates a residual field to complement the information lost by the IFFT field. Finally, the IFFT field and residual field are combined to produce the final reconstructed flow field. We conduct numerical experiments on the unsteady periodic flow around a cylinder and transonic flow around a NACA0012 airfoil to demonstrate the feasibility and high accuracy of our proposed method. Compared to the widely used proper orthogonal decomposition (POD) and shallow decoder (SD) methods, our approach achieves at least 83.9% and 72.2% reduction in mean absolute error, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
5秒前
9秒前
11秒前
14秒前
zhao发布了新的文献求助10
14秒前
顾矜应助大佬们请帮助我采纳,获得10
14秒前
蔡翌文完成签到 ,获得积分10
19秒前
Angela完成签到,获得积分10
21秒前
科研通AI6应助怕黑康采纳,获得10
22秒前
阿俊1212完成签到,获得积分10
22秒前
JamesPei应助weske采纳,获得10
23秒前
樱桃猴子完成签到,获得积分10
28秒前
和谐的亦丝完成签到,获得积分10
30秒前
万能图书馆应助zhao采纳,获得10
31秒前
32秒前
serendipity完成签到 ,获得积分10
37秒前
38秒前
42秒前
毛毛弟完成签到 ,获得积分10
44秒前
45秒前
榨菜发布了新的文献求助50
46秒前
46秒前
47秒前
47秒前
解语花发布了新的文献求助30
49秒前
50秒前
司空豁应助992575采纳,获得10
50秒前
FFFFcom发布了新的文献求助10
52秒前
凌云客发布了新的文献求助10
53秒前
57秒前
YNHN完成签到 ,获得积分10
58秒前
自由的无色完成签到 ,获得积分10
58秒前
George完成签到,获得积分10
1分钟前
Jemma完成签到 ,获得积分10
1分钟前
FFFFcom完成签到,获得积分10
1分钟前
1分钟前
调皮的巧凡完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581335
求助须知:如何正确求助?哪些是违规求助? 3999305
关于积分的说明 12381079
捐赠科研通 3673936
什么是DOI,文献DOI怎么找? 2024799
邀请新用户注册赠送积分活动 1058580
科研通“疑难数据库(出版商)”最低求助积分说明 945306