A hybrid deep learning framework for unsteady periodic flow field reconstruction based on frequency and residual learning

残余物 快速傅里叶变换 算法 计算机科学 领域(数学) 离散傅里叶变换(通用) 流量(数学) 傅里叶变换 数学 短时傅里叶变换 傅里叶分析 数学分析 几何学 纯数学
作者
Xingwen Peng,Xingchen Li,Xiaoqian Chen,Xianqi Chen,Wen Yao
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:141: 108539-108539 被引量:3
标识
DOI:10.1016/j.ast.2023.108539
摘要

Reconstructing a complete flow field from limited sensor measurement is quite essential for state evaluation, optimization, monitoring, and control of the flow system. Unsteady periodic flow, as a widespread phenomenon in science and engineering, attracts in-depth research over decades. Deep learning has been employed in flow field reconstruction, whereas the accurate estimation for the unsteady flow field with strong nonlinearity is still difficult. To address this problem, we propose a hybrid deep learning framework that incorporates frequency and residual learning to accurately reconstruct an unsteady periodic flow field from limited sensor measurement. First, to extract the frequency features, the historical flow field data is decomposed into different modes with different frequencies named frequency modes via fast Fourier transform (FFT). Next, we construct a hybrid deep neural network framework consisting of an inverse fast Fourier transform (IFFT) block and a residual block. The IFFT block maps sensor measurements to frequency mode temporal coefficients, which are multiplied with frequency modes to recover an IFFT field. Meanwhile, the residual block adaptively generates a residual field to complement the information lost by the IFFT field. Finally, the IFFT field and residual field are combined to produce the final reconstructed flow field. We conduct numerical experiments on the unsteady periodic flow around a cylinder and transonic flow around a NACA0012 airfoil to demonstrate the feasibility and high accuracy of our proposed method. Compared to the widely used proper orthogonal decomposition (POD) and shallow decoder (SD) methods, our approach achieves at least 83.9% and 72.2% reduction in mean absolute error, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LZY完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
希望天下0贩的0应助roshan采纳,获得10
3秒前
muqiangyao完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
香蕉觅云应助jdjd采纳,获得10
4秒前
5秒前
林夕蓝发布了新的文献求助20
5秒前
北河二完成签到,获得积分10
5秒前
6秒前
木又权完成签到,获得积分10
6秒前
7秒前
劳永杰发布了新的文献求助10
7秒前
完美世界应助roshan采纳,获得10
7秒前
wangyup发布了新的文献求助10
8秒前
CikY发布了新的文献求助10
8秒前
手握灵珠常奋笔完成签到,获得积分10
8秒前
Rondab应助浮生采纳,获得10
9秒前
小俊俊发布了新的文献求助10
9秒前
drrobins完成签到,获得积分10
9秒前
奶冻发布了新的文献求助10
9秒前
11秒前
GT发布了新的文献求助10
11秒前
shufessm完成签到,获得积分0
11秒前
drrobins发布了新的文献求助10
13秒前
闲鱼嫌鱼咸完成签到,获得积分10
14秒前
14秒前
打打应助刘亚赛采纳,获得50
16秒前
田様应助淡定的过客采纳,获得10
17秒前
任什么性完成签到,获得积分10
18秒前
林药师完成签到,获得积分10
20秒前
女王陛下发布了新的文献求助10
20秒前
Rondab应助浮生采纳,获得10
21秒前
CikY完成签到,获得积分10
22秒前
过时的洋葱完成签到,获得积分10
22秒前
花花完成签到 ,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425