亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid deep learning framework for unsteady periodic flow field reconstruction based on frequency and residual learning

残余物 快速傅里叶变换 算法 计算机科学 领域(数学) 离散傅里叶变换(通用) 流量(数学) 傅里叶变换 数学 短时傅里叶变换 傅里叶分析 数学分析 几何学 纯数学
作者
Xingwen Peng,Xingchen Li,Xiaoqian Chen,Xianqi Chen,Wen Yao
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:141: 108539-108539 被引量:3
标识
DOI:10.1016/j.ast.2023.108539
摘要

Reconstructing a complete flow field from limited sensor measurement is quite essential for state evaluation, optimization, monitoring, and control of the flow system. Unsteady periodic flow, as a widespread phenomenon in science and engineering, attracts in-depth research over decades. Deep learning has been employed in flow field reconstruction, whereas the accurate estimation for the unsteady flow field with strong nonlinearity is still difficult. To address this problem, we propose a hybrid deep learning framework that incorporates frequency and residual learning to accurately reconstruct an unsteady periodic flow field from limited sensor measurement. First, to extract the frequency features, the historical flow field data is decomposed into different modes with different frequencies named frequency modes via fast Fourier transform (FFT). Next, we construct a hybrid deep neural network framework consisting of an inverse fast Fourier transform (IFFT) block and a residual block. The IFFT block maps sensor measurements to frequency mode temporal coefficients, which are multiplied with frequency modes to recover an IFFT field. Meanwhile, the residual block adaptively generates a residual field to complement the information lost by the IFFT field. Finally, the IFFT field and residual field are combined to produce the final reconstructed flow field. We conduct numerical experiments on the unsteady periodic flow around a cylinder and transonic flow around a NACA0012 airfoil to demonstrate the feasibility and high accuracy of our proposed method. Compared to the widely used proper orthogonal decomposition (POD) and shallow decoder (SD) methods, our approach achieves at least 83.9% and 72.2% reduction in mean absolute error, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
11122发布了新的文献求助10
3秒前
4秒前
美丽的寻绿完成签到,获得积分10
5秒前
5秒前
yo一天完成签到 ,获得积分10
7秒前
14秒前
dorothy发布了新的文献求助200
14秒前
28秒前
31秒前
35秒前
小艾完成签到 ,获得积分10
38秒前
xwwx完成签到 ,获得积分10
40秒前
40秒前
40秒前
43秒前
45秒前
微风正好发布了新的文献求助10
45秒前
tdtk发布了新的文献求助10
46秒前
something发布了新的文献求助10
46秒前
小马甲应助tend采纳,获得10
51秒前
cy完成签到 ,获得积分10
55秒前
Lalala发布了新的文献求助20
55秒前
高级牛马完成签到 ,获得积分10
56秒前
JamesPei应助tdtk采纳,获得10
57秒前
wop111应助科研通管家采纳,获得20
59秒前
爆米花应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
浮游应助科研通管家采纳,获得10
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
小二郎应助科研通管家采纳,获得10
59秒前
浮浮世世应助科研通管家采纳,获得30
59秒前
1分钟前
lixiniverson完成签到 ,获得积分0
1分钟前
天天快乐应助炙热的渊思采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
w。发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490