亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of fractional flow reserve with enhanced ant lion optimized support vector machine

支持向量机 水准点(测量) 部分流量储备 趋同(经济学) 蚁群优化算法 计算机科学 混乱的 算法 构造(python库) 高斯分布 GSM演进的增强数据速率 人工智能 机器学习 数学优化 数学 医学 冠状动脉造影 物理 大地测量学 量子力学 心肌梗塞 经济增长 经济 程序设计语言 地理 精神科
作者
Haoxuan Lu,Li Huang,Yanqing Xie,Zhong Zhou,Hanbin Cui,Sheng Jing,Zhuo Yang,Decai Zhu,Shi-Qi Wang,Donggang Bao,Guoxi Liang,Zhennao Cai,Huiling Chen,Wenming He
出处
期刊:Heliyon [Elsevier]
卷期号:9 (8): e18832-e18832 被引量:2
标识
DOI:10.1016/j.heliyon.2023.e18832
摘要

The evaluation of coronary morphology provides important guidance for the treatment of coronary heart disease (CHD). A chaotic Gaussian mutation antlion optimizer algorithm (CGALO) is proposed in the paper, and it is combined with SVM to construct a classification prediction model for Fractional flow reserve (FFR). To overcome the limitations of the original antlion optimizer (ALO) algorithm, the chaotic Gaussian mutation strategy is introduced, which leads to an improvement in its convergence speed and accuracy. To evaluate the proposed algorithm's performance, comparative experiments were conducted on 23 benchmark functions alongside 12 other cutting-edge optimization algorithms. The experimental outcomes demonstrate that the proposed algorithm achieves superior convergence accuracy and speed compared to the alternative comparison algorithms. Additionally, it is combined with SVM and FS to construct a hierarchical FFR classification model, which is utilized to make effective predictions for 84 patients at the affiliated hospital of medical school, Ningbo university. The experimental results demonstrate that the proposed model achieves an average accuracy of 92%. Moreover, it concludes that smoking history, number of lesion vessels, lesion location, diffuse lesions and ST segment changes, and other factors are the most critical indicators for FFR. Therefore, the model that has been established is a new FFR intelligent classification prediction technology that can effectively assist doctors in making corresponding decisions and evaluation plans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
SUNny发布了新的文献求助10
10秒前
笑傲完成签到,获得积分10
39秒前
开心每一天完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
杨泽宇发布了新的文献求助10
1分钟前
日常K人完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
SnowElf完成签到,获得积分10
2分钟前
2分钟前
hongye发布了新的文献求助30
2分钟前
SnowElf发布了新的文献求助10
2分钟前
2分钟前
2分钟前
orangel发布了新的文献求助10
3分钟前
hongye完成签到 ,获得积分10
3分钟前
小粒橙完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
HaoZhang发布了新的文献求助10
3分钟前
HaoZhang完成签到,获得积分20
3分钟前
尼古拉斯铁柱完成签到 ,获得积分10
4分钟前
矜持完成签到 ,获得积分10
4分钟前
Mic应助笑点低的斑马采纳,获得10
4分钟前
lixuebin发布了新的文献求助10
4分钟前
5分钟前
小白发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
嗨嗨嗨完成签到 ,获得积分10
7分钟前
胖小羊完成签到 ,获得积分10
7分钟前
8分钟前
桥西小河完成签到 ,获得积分10
8分钟前
脑洞疼应助怕孤独的怀莲采纳,获得30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505