A survey of FPGA and ASIC designs for transformer inference acceleration and optimization

计算机科学 现场可编程门阵列 专用集成电路 嵌入式系统 计算机体系结构 变压器 计算机硬件 计算机工程 电气工程 工程类 电压
作者
Beom Jin Kang,Hae In Lee,Seok Kyu Yoon,Young Chan Kim,Sang Beom Jeong,Seong Jun O,Hyun Kim
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:155: 103247-103247
标识
DOI:10.1016/j.sysarc.2024.103247
摘要

Recently, transformer-based models have achieved remarkable success in various fields, such as computer vision, speech recognition, and natural language processing. However, transformer models require a substantially higher number of parameters and computational operations than conventional neural networks (e.g., recurrent neural networks, long-short-term memory, and convolutional neural networks). Transformer models are typically processed on graphics processing unit (GPU) platforms specialized for high-performance memory and parallel processing. However, the high power consumption of GPUs poses significant challenges for their deployment in edge device environments with limited battery capacity. To address these issues, research on using field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs) to drive transformer models with low power consumption is underway. FPGAs offer a high level of flexibility, whereas ASICs are beneficial for optimizing throughput and power. Therefore, both platforms are highly suitable for efficiently optimizing matrix multiplication operations, constituting a significant portion of transformer models. In addition, FPGAs and ASICs consume less power than GPUs, making them ideal energy-efficient platforms. This study investigates and analyzes the model compression methods, various optimization techniques, and architectures of accelerators related to FPGA- and ASIC-based transformer designs. We expect this study to serve as a valuable guide for hardware research in the transformer field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助小小牛采纳,获得30
3秒前
3秒前
无私的念文完成签到 ,获得积分10
6秒前
7秒前
甜橙完成签到 ,获得积分10
8秒前
8秒前
大华完成签到,获得积分10
8秒前
8秒前
liulong发布了新的文献求助10
9秒前
11秒前
刚好夏天完成签到 ,获得积分10
11秒前
13秒前
libai关注了科研通微信公众号
13秒前
nwds发布了新的文献求助10
13秒前
ZDZ完成签到,获得积分20
14秒前
gdh发布了新的文献求助10
14秒前
张宝发布了新的文献求助10
15秒前
Pauline发布了新的文献求助10
15秒前
木子发布了新的文献求助10
16秒前
liulong完成签到,获得积分20
20秒前
20秒前
科目三应助御舟观澜采纳,获得10
22秒前
123完成签到,获得积分10
22秒前
安详的大象完成签到 ,获得积分10
23秒前
苏卿应助许大脚采纳,获得10
23秒前
lljken完成签到,获得积分10
23秒前
24秒前
楚小儿完成签到 ,获得积分10
24秒前
允初发布了新的文献求助10
25秒前
CipherSage应助嗨哈尼采纳,获得10
25秒前
123发布了新的文献求助10
27秒前
CipherSage应助海阔凭采纳,获得10
28秒前
HY发布了新的文献求助10
31秒前
yyyh完成签到,获得积分20
32秒前
小白白白完成签到 ,获得积分10
33秒前
Akim应助旺仔儿童成长牛奶采纳,获得10
33秒前
33秒前
科目三应助允初采纳,获得10
35秒前
许七安完成签到,获得积分10
36秒前
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161454
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897283
捐赠科研通 2471758
什么是DOI,文献DOI怎么找? 1316122
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112