已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A survey of FPGA and ASIC designs for transformer inference acceleration and optimization

计算机科学 现场可编程门阵列 专用集成电路 嵌入式系统 计算机体系结构 变压器 计算机硬件 计算机工程 电气工程 工程类 电压
作者
Beom Jin Kang,Hae In Lee,Seok Kyu Yoon,Young Chan Kim,Sang Beom Jeong,Seong Jun O,Hyun Kim
出处
期刊:Journal of Systems Architecture [Elsevier BV]
卷期号:155: 103247-103247
标识
DOI:10.1016/j.sysarc.2024.103247
摘要

Recently, transformer-based models have achieved remarkable success in various fields, such as computer vision, speech recognition, and natural language processing. However, transformer models require a substantially higher number of parameters and computational operations than conventional neural networks (e.g., recurrent neural networks, long-short-term memory, and convolutional neural networks). Transformer models are typically processed on graphics processing unit (GPU) platforms specialized for high-performance memory and parallel processing. However, the high power consumption of GPUs poses significant challenges for their deployment in edge device environments with limited battery capacity. To address these issues, research on using field-programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs) to drive transformer models with low power consumption is underway. FPGAs offer a high level of flexibility, whereas ASICs are beneficial for optimizing throughput and power. Therefore, both platforms are highly suitable for efficiently optimizing matrix multiplication operations, constituting a significant portion of transformer models. In addition, FPGAs and ASICs consume less power than GPUs, making them ideal energy-efficient platforms. This study investigates and analyzes the model compression methods, various optimization techniques, and architectures of accelerators related to FPGA- and ASIC-based transformer designs. We expect this study to serve as a valuable guide for hardware research in the transformer field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rover完成签到 ,获得积分10
1秒前
_Charmo发布了新的文献求助10
1秒前
追寻的纸鹤完成签到 ,获得积分10
1秒前
wangfaqing942完成签到 ,获得积分10
3秒前
机灵哈密瓜完成签到,获得积分10
4秒前
知性的土豆完成签到,获得积分10
4秒前
断了的弦完成签到,获得积分10
6秒前
7秒前
星叶完成签到 ,获得积分10
7秒前
_Charmo完成签到,获得积分10
7秒前
天天向上完成签到,获得积分10
8秒前
青枝完成签到,获得积分10
8秒前
xuhanghang发布了新的文献求助10
9秒前
欣欣子完成签到 ,获得积分10
11秒前
香蕉觅云应助研友_r8YgPn采纳,获得10
13秒前
淡定自中完成签到 ,获得积分10
13秒前
小小鱼发布了新的文献求助10
13秒前
19秒前
20秒前
曾天祥完成签到,获得积分10
20秒前
周周粥完成签到 ,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
与山完成签到,获得积分10
23秒前
HS完成签到,获得积分10
24秒前
lijunlhc完成签到,获得积分10
25秒前
helpme完成签到,获得积分10
28秒前
与山发布了新的文献求助100
28秒前
小小鱼完成签到,获得积分10
28秒前
充电宝应助mmyhn采纳,获得10
29秒前
Monicadd完成签到 ,获得积分10
29秒前
田様应助典雅的俊驰采纳,获得10
30秒前
春天的粥完成签到 ,获得积分10
30秒前
伊莎贝儿完成签到 ,获得积分10
31秒前
wanci应助博修采纳,获得10
32秒前
小凯完成签到 ,获得积分10
33秒前
结实的小土豆完成签到 ,获得积分10
35秒前
风雨中飘摇完成签到,获得积分10
35秒前
sss完成签到 ,获得积分10
36秒前
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959930
求助须知:如何正确求助?哪些是违规求助? 3506191
关于积分的说明 11128233
捐赠科研通 3238160
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024