亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decision-Making with Predictions of Others' Likely and Unlikely Choices in the Human Brain

心理学 人才外流 认知心理学 经济 人口经济学
作者
Ning Ma,Norihiro Harasawa,Kenichi Ueno,Kang Cheng,Hiroyuki Nakahara
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:44 (37): e2236232024-e2236232024
标识
DOI:10.1523/jneurosci.2236-23.2024
摘要

For better decisions in social interactions, humans often must understand the thinking of others and predict their actions. Since such predictions are uncertain, multiple predictions may be necessary for better decision-making. However, the neural processes and computations underlying such social decision-making remain unclear. We investigated this issue by developing a behavioral paradigm and performing functional magnetic resonance imaging and computational modeling. In our task, female and male participants were required to predict others’ choices in order to make their own value-based decisions, as the outcome depended on others’ choices. Results showed, to make choices, the participants mostly relied on a value difference (primary) generated from the case where others would make a likely choice, but sometimes they additionally used another value difference (secondary) from the opposite case where others make an unlikely choice. We found that the activations in the posterior cingulate cortex (PCC) correlated with the primary difference while the activations in the right dorsolateral prefrontal cortex (rdlPFC) correlated with the secondary difference. Analysis of neural coupling and temporal dynamics suggested a three-step processing network, beginning with the left amygdala signals for predictions of others’ choices. Modulated by these signals, the PCC and rdlPFC reflect the respective value differences for self-decisions. Finally, the medial prefrontal cortex integrated these decision signals for a final decision. Our findings elucidate the neural process of constructing value-based decisions by predicting others and illuminate their key variables with social modulations, providing insight into the differential functional roles of these brain regions in this process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
英姑应助出云天花采纳,获得10
30秒前
聪慧的开山完成签到 ,获得积分10
32秒前
39秒前
出云天花发布了新的文献求助10
44秒前
48秒前
49秒前
明亮的老四完成签到 ,获得积分10
54秒前
55秒前
小洛完成签到 ,获得积分10
1分钟前
科研通AI2S应助白华苍松采纳,获得10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
出云天花发布了新的文献求助10
1分钟前
李爱国应助出云天花采纳,获得10
1分钟前
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
大个应助出云天花采纳,获得10
2分钟前
2分钟前
2分钟前
Akim应助沉静的万天采纳,获得10
2分钟前
小聖完成签到 ,获得积分10
2分钟前
SciGPT应助沉静的万天采纳,获得10
2分钟前
CJH104完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助飘逸惠采纳,获得10
3分钟前
111发布了新的文献求助10
3分钟前
mm发布了新的文献求助10
3分钟前
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
飘逸惠发布了新的文献求助10
3分钟前
3分钟前
共享精神应助江洋大盗采纳,获得10
3分钟前
科研通AI6应助111采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534215
求助须知:如何正确求助?哪些是违规求助? 4622286
关于积分的说明 14582372
捐赠科研通 4562479
什么是DOI,文献DOI怎么找? 2500181
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450877