亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decision-Making with Predictions of Others' Likely and Unlikely Choices in the Human Brain

心理学 人才外流 认知心理学 经济 人口经济学
作者
Ning Ma,Norihiro Harasawa,Kenichi Ueno,Kang Cheng,Hiroyuki Nakahara
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:44 (37): e2236232024-e2236232024
标识
DOI:10.1523/jneurosci.2236-23.2024
摘要

For better decisions in social interactions, humans often must understand the thinking of others and predict their actions. Since such predictions are uncertain, multiple predictions may be necessary for better decision-making. However, the neural processes and computations underlying such social decision-making remain unclear. We investigated this issue by developing a behavioral paradigm and performing functional magnetic resonance imaging and computational modeling. In our task, female and male participants were required to predict others’ choices in order to make their own value-based decisions, as the outcome depended on others’ choices. Results showed, to make choices, the participants mostly relied on a value difference (primary) generated from the case where others would make a likely choice, but sometimes they additionally used another value difference (secondary) from the opposite case where others make an unlikely choice. We found that the activations in the posterior cingulate cortex (PCC) correlated with the primary difference while the activations in the right dorsolateral prefrontal cortex (rdlPFC) correlated with the secondary difference. Analysis of neural coupling and temporal dynamics suggested a three-step processing network, beginning with the left amygdala signals for predictions of others’ choices. Modulated by these signals, the PCC and rdlPFC reflect the respective value differences for self-decisions. Finally, the medial prefrontal cortex integrated these decision signals for a final decision. Our findings elucidate the neural process of constructing value-based decisions by predicting others and illuminate their key variables with social modulations, providing insight into the differential functional roles of these brain regions in this process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助绿树成荫采纳,获得10
2秒前
坚定的小蘑菇完成签到 ,获得积分10
2秒前
8秒前
Timelapse发布了新的文献求助10
11秒前
31秒前
35秒前
43秒前
lllll完成签到,获得积分20
58秒前
58秒前
Timelapse发布了新的文献求助10
58秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
BowieHuang应助Timelapse采纳,获得10
1分钟前
甜橙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得20
1分钟前
1分钟前
852应助一碗鱼采纳,获得10
2分钟前
wanci应助andrele采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
2分钟前
theo完成签到 ,获得积分10
2分钟前
糕冷草莓完成签到,获得积分10
2分钟前
英姑应助一碗鱼采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
一碗鱼发布了新的文献求助10
3分钟前
一碗鱼完成签到,获得积分10
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423