Generating Protein Structures for Pathway Discovery Using Deep Learning

计算机科学 药物发现 深度学习 数据科学 计算生物学 人工智能 生物信息学 生物
作者
Konstantia Georgouli,Robert Stephany,Jeremy O. B. Tempkin,Cláudio Santiago,Fikret Aydin,Mark Heimann,Loïc Pottier,Xiao‐Hua Zhang,Timothy S. Carpenter,Tim Hsu,Dwight V. Nissley,Frederick H. Streitz,Felice C. Lightstone,Helgi I. Ingólfsson,Peer‐Timo Bremer
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c00816
摘要

Resolving the intricate details of biological phenomena at the molecular level is fundamentally limited by both length- and time scales that can be probed experimentally. Molecular dynamics (MD) simulations at various scales are powerful tools frequently employed to offer valuable biological insights beyond experimental resolution. However, while it is relatively simple to observe long-lived, stable configurations of, for example, proteins, at the required spatial resolution, simulating the more interesting rare transitions between such states often takes orders of magnitude longer than what is feasible even on the largest supercomputers available today. One common aspect of this challenge is pathway discovery, where the start and end states of a scientific phenomenon are known or can be approximated, but the mechanistic details in between are unknown. Here, we propose a representation-learning-based solution that uses interpolation and extrapolation in an abstract representation space to synthesize potential transition states, which are automatically validated using MD simulations. The new simulations of the synthesized transition states are subsequently incorporated into the representation learning, leading to an iterative framework for targeted path sampling. Our approach is demonstrated by recovering the transition of a RAS-RAF protein domain (CRD) from membrane-free to interacting with the membrane using coarse-grain MD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miracle发布了新的文献求助10
刚刚
Airhug完成签到 ,获得积分10
刚刚
刚刚
你有点难追完成签到,获得积分20
1秒前
Inori发布了新的文献求助10
1秒前
1秒前
真谛发布了新的文献求助10
2秒前
乐乐应助HTY采纳,获得10
2秒前
2秒前
hs完成签到,获得积分20
3秒前
友好的天奇完成签到,获得积分10
4秒前
4秒前
远山完成签到,获得积分10
4秒前
哈哈哈哈哈哈完成签到,获得积分10
4秒前
传奇3应助南笙采纳,获得30
4秒前
打打应助Kenzonvay采纳,获得10
6秒前
科研通AI2S应助Meteor采纳,获得10
6秒前
6秒前
pain豆先生完成签到 ,获得积分10
6秒前
cooper发布了新的文献求助10
7秒前
桐桐应助清新的帅哥采纳,获得10
7秒前
7秒前
优雅雁菱完成签到,获得积分10
8秒前
传奇3应助Miracle采纳,获得10
9秒前
脑洞疼应助科研小达人采纳,获得10
9秒前
星辰大海应助塞塞采纳,获得10
10秒前
LL666发布了新的文献求助10
10秒前
10秒前
慕容半邪发布了新的文献求助10
10秒前
橘子的橘完成签到,获得积分10
10秒前
香甜玉米糕完成签到,获得积分10
13秒前
LuLu完成签到,获得积分10
14秒前
14秒前
烟花应助daheeeee采纳,获得10
16秒前
FashionBoy应助11采纳,获得10
19秒前
诸葛书虫发布了新的文献求助10
19秒前
张张发布了新的文献求助10
20秒前
风趣的觅山完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123085
求助须知:如何正确求助?哪些是违规求助? 2773583
关于积分的说明 7718515
捐赠科研通 2429199
什么是DOI,文献DOI怎么找? 1290188
科研通“疑难数据库(出版商)”最低求助积分说明 621766
版权声明 600220