Generating Protein Structures for Pathway Discovery Using Deep Learning

计算机科学 药物发现 深度学习 数据科学 计算生物学 人工智能 生物信息学 生物
作者
Konstantia Georgouli,Robert Stephany,Jeremy O. B. Tempkin,Cláudio Santiago,Fikret Aydin,Mark Heimann,Loïc Pottier,Xiao‐Hua Zhang,Timothy S. Carpenter,Tim Hsu,Dwight V. Nissley,Frederick H. Streitz,Felice C. Lightstone,Helgi I. Ingólfsson,Peer‐Timo Bremer
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c00816
摘要

Resolving the intricate details of biological phenomena at the molecular level is fundamentally limited by both length- and time scales that can be probed experimentally. Molecular dynamics (MD) simulations at various scales are powerful tools frequently employed to offer valuable biological insights beyond experimental resolution. However, while it is relatively simple to observe long-lived, stable configurations of, for example, proteins, at the required spatial resolution, simulating the more interesting rare transitions between such states often takes orders of magnitude longer than what is feasible even on the largest supercomputers available today. One common aspect of this challenge is pathway discovery, where the start and end states of a scientific phenomenon are known or can be approximated, but the mechanistic details in between are unknown. Here, we propose a representation-learning-based solution that uses interpolation and extrapolation in an abstract representation space to synthesize potential transition states, which are automatically validated using MD simulations. The new simulations of the synthesized transition states are subsequently incorporated into the representation learning, leading to an iterative framework for targeted path sampling. Our approach is demonstrated by recovering the transition of a RAS-RAF protein domain (CRD) from membrane-free to interacting with the membrane using coarse-grain MD simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眠茶醒药发布了新的文献求助10
刚刚
雨水完成签到,获得积分10
刚刚
SYLH应助Tao采纳,获得30
1秒前
pluto应助过儿采纳,获得10
1秒前
1秒前
1秒前
Galen发布了新的文献求助10
3秒前
4秒前
11完成签到,获得积分10
4秒前
默默的丹彤完成签到,获得积分10
4秒前
Lord完成签到,获得积分10
4秒前
热心市民小杨完成签到,获得积分20
4秒前
肥肥发布了新的文献求助10
5秒前
11111发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
8秒前
8秒前
眠茶醒药完成签到,获得积分10
10秒前
11发布了新的文献求助10
10秒前
文献互助达人哈哈哈完成签到,获得积分10
10秒前
飞飞飞完成签到,获得积分10
10秒前
在水一方应助超帅冬易采纳,获得30
11秒前
11秒前
烟雨梦兮发布了新的文献求助10
12秒前
pp发布了新的文献求助10
12秒前
12秒前
ssx发布了新的文献求助10
14秒前
lxr发布了新的文献求助10
14秒前
共享精神应助飞飞飞采纳,获得10
14秒前
Orange应助fei采纳,获得10
15秒前
专注青槐发布了新的文献求助10
15秒前
luckily完成签到,获得积分10
15秒前
17秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975900
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201602
捐赠科研通 3256663
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877564
科研通“疑难数据库(出版商)”最低求助积分说明 806430