已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction Model for in-Stent Restenosis Post-PCI Based on Boruta Algorithm and Deep Learning: The Role of Blood Cholesterol and Lymphocyte Ratio

传统PCI 再狭窄 计算机科学 算法 人工智能 内科学 医学 心脏病学 支架 心肌梗塞
作者
Ling Hou,Ke Su,Ting He,Jinbo Zhao,Yuanhong Li
出处
期刊:Journal of multidisciplinary healthcare [Dove Medical Press]
卷期号:Volume 17: 4731-4739
标识
DOI:10.2147/jmdh.s487511
摘要

Background: Percutaneous coronary intervention (PCI) is the primary treatment for acute myocardial infarction (AMI). However, in-stent restenosis (ISR) remains a significant limitation to the efficacy of PCI. The cholesterol-to-lymphocyte ratio (CLR), a novel biomarker associated with inflammation and dyslipidemia, may have predictive value for ISR. Deep learning-based models, such as the multilayer perceptron (MLP), can aid in establishing predictive models for ISR using CLR. Methods: A retrospective analysis was conducted on clinical and laboratory data from 1967 patients. The Boruta algorithm was employed to identify key features associated with ISR. An MLP model was developed and divided into training and validation sets. Model performance was evaluated using ROC curves and calibration plots. Results: Patients in the ISR group exhibited significantly higher levels of CLR and low-density lipoprotein (LDL) compared to the non-ISR group. The Boruta algorithm identified 21 important features for subsequent modeling. The MLP model achieved an AUC of 0.95 on the validation set and 0.63 on the test set, indicating good predictive performance. Calibration plots demonstrated good agreement between predicted and observed outcomes. Feature importance analysis revealed that the number of initial stent implants, hemoglobin levels, Gensini score, CLR, and white blood cell count were significant predictors of ISR. Partial dependence plots (PDP) confirmed CLR as a key predictor for ISR. Conclusion: The CLR, as a biomarker that integrates lipid metabolism and inflammation, shows significant potential in predicting coronary ISR. The MLP model, based on deep learning, demonstrated robust predictive capabilities, offering new insights and strategies for clinical decision-making. Keywords: cholesterol-to-lymphocyte ratio, deep learning, multilayer perceptron, Boruta algorithm, in-stent restenosis

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
binxman发布了新的文献求助10
1秒前
yhz123发布了新的文献求助10
1秒前
4秒前
5秒前
12完成签到 ,获得积分10
6秒前
赘婿应助开放青旋采纳,获得10
8秒前
wanci应助卷心菜的菜采纳,获得10
8秒前
周周发布了新的文献求助10
9秒前
11秒前
12秒前
15秒前
SIM完成签到,获得积分10
17秒前
20秒前
20秒前
呆萌沛蓝发布了新的文献求助10
23秒前
owoow完成签到 ,获得积分10
24秒前
豆芽发布了新的文献求助10
24秒前
Future完成签到,获得积分10
25秒前
JOY发布了新的文献求助10
25秒前
深情安青应助紧张的非笑采纳,获得30
26秒前
29秒前
思源应助lll采纳,获得10
29秒前
30秒前
31秒前
32秒前
32秒前
33秒前
Akim应助阮人雄采纳,获得10
33秒前
CodeCraft应助sevten采纳,获得10
33秒前
36秒前
王莎发布了新的文献求助10
38秒前
李爱国应助binxman采纳,获得10
38秒前
xuxunnn发布了新的文献求助10
38秒前
sxy发布了新的文献求助10
39秒前
39秒前
xuxunnn完成签到,获得积分10
46秒前
49秒前
52秒前
52秒前
53秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388192
求助须知:如何正确求助?哪些是违规求助? 3000718
关于积分的说明 8792903
捐赠科研通 2686743
什么是DOI,文献DOI怎么找? 1471782
科研通“疑难数据库(出版商)”最低求助积分说明 680550
邀请新用户注册赠送积分活动 673282