Design of a decision support system to form optimal technological processes for parts machining based on artificial intelligence methods

机械加工 过程(计算) 任务(项目管理) 遗传算法 决策支持系统 人工神经网络 计算机科学 机床 工业工程 制造工程 工程类 人工智能 机械工程 机器学习 系统工程 操作系统
作者
Viacheslav Lymarenko,Oleksandr Mozhaiev,I. P. Khavina,Serhii Tiulieniev,Mykhailo Mozhaiev,Yurii Onishchenko,Yurii Gnusov,Mikhail Tsuranov,Volodymyr Homon
出处
期刊:Eastern-European Journal of Enterprise Technologies [Private Company Technology Center]
卷期号:3 (3 (129)): 6-15
标识
DOI:10.15587/1729-4061.2024.306611
摘要

The object of this study is the process of designing a decision support system for automating the formation of technological processes (TPs) for machining parts of high-precision equipment for the aviation industry. The task of improving the efficiency of the optimization of the process of mechanical processing of parts through the use of a decision support system (DSS) and artificial intelligence methods, which, unlike known analytical approaches, allow describing processes and phenomena that do not have strict formalization, has been solved. DSS consists of three subsystems. The first is an information subsystem for the automated formation of the structure in the technological process of machining parts of high-precision equipment. The second is an information subsystem for optimizing parameters of TP operations by cutting, taking into account the accumulation of tool wear. The third is a subsystem of control and adjustment of operating parameters. In the process of conducting research, an approach was devised for designing optimal technological processes to machine parts of high-precision equipment. The task of designing the structure of technological processes was solved using production rules. The task of determining the optimal parameters of turning and milling operations was solved in a multi-criteria statement. The following objective functions were used: cost of the operation, specific energy consumption for the operation, and productivity of the operation. At the same time, the wear of the tool accumulated over time was taken into account. The solution was obtained by searching for the Pareto-optimal solution using genetic algorithms and artificial neural networks. As a result of the work of DSS, an optimal technological process for machining parts of high-precision equipment for the aviation industry was formed, which made it possible to reduce the production time of one part by 5 % and reduce the total cost of production of the part by 14 %
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聒噪的小黄瓜完成签到,获得积分10
刚刚
tt完成签到,获得积分10
1秒前
林子发布了新的文献求助10
1秒前
伏天完成签到,获得积分10
1秒前
科目三应助雪山飞鹰采纳,获得10
2秒前
2秒前
2秒前
悦耳天蓝完成签到,获得积分10
3秒前
222完成签到,获得积分10
3秒前
4秒前
4秒前
Aliothae发布了新的文献求助10
5秒前
皮蛋发布了新的文献求助20
5秒前
6秒前
7秒前
7秒前
优秀的海白关注了科研通微信公众号
8秒前
11发布了新的文献求助10
8秒前
林子完成签到,获得积分10
8秒前
9秒前
yjia完成签到,获得积分10
9秒前
自信白梦发布了新的文献求助10
9秒前
10秒前
duohongrui完成签到 ,获得积分10
12秒前
孙远欣发布了新的文献求助10
12秒前
酷炫书兰完成签到,获得积分20
12秒前
12秒前
14秒前
淡定魂幽发布了新的文献求助20
15秒前
17秒前
Owen应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
18秒前
Zn应助科研通管家采纳,获得10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
Lucas应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538518
求助须知:如何正确求助?哪些是违规求助? 3116237
关于积分的说明 9324419
捐赠科研通 2814030
什么是DOI,文献DOI怎么找? 1546420
邀请新用户注册赠送积分活动 720537
科研通“疑难数据库(出版商)”最低求助积分说明 712068