Adaptive Decision Spatio-temporal neural ODE for traffic flow forecasting with Multi-Kernel Temporal Dynamic Dilation Convolution

颂歌 平滑的 计算机科学 核(代数) 卷积(计算机科学) 人工神经网络 流量(计算机网络) 人工智能 机器学习 数学 应用数学 数据挖掘 计算机视觉 组合数学 计算机安全
作者
Zihao Chu,Wenming Ma,Mingqi Li,Hao Chen
出处
期刊:Neural Networks [Elsevier BV]
卷期号:179: 106549-106549 被引量:3
标识
DOI:10.1016/j.neunet.2024.106549
摘要

Traffic flow prediction is crucial for efficient traffic management. It involves predicting vehicle movement patterns to reduce congestion and enhance traffic flow. However, the highly non-linear and complex patterns commonly observed in traffic flow pose significant challenges for this task. Current Graph Neural Network (GNN) models often construct shallow networks, which limits their ability to extract deeper spatio-temporal representations. Neural ordinary differential equations for traffic prediction address over-smoothing but require significant computational resources, leading to inefficiencies, and sometimes deeper networks may lead to poorer predictions for complex traffic information. In this study, we propose an Adaptive Decision spatio-temporal Neural Ordinary Differential Network, which can adaptively determine the number of layers of ODE according to the complexity of traffic information. It can solve the over-smoothing problem better, improving overall efficiency and prediction accuracy. In addition, traditional temporal convolution methods make it difficult to deal with complex and variable traffic time information with a large time span. Therefore, we introduce a multi-kernel temporal dynamic expansive convolution to handle the traffic time information. Multi-kernel temporal dynamic expansive convolution employs a dynamic dilation strategy, dynamically adjusting the network's receptive field across levels, effectively capturing temporal dependencies, and can better adapt to the changing time data of traffic information. Additionally, multi-kernel temporal dynamic expansive convolution integrates multi-scale convolution kernels, enabling the model to learn features across diverse temporal scales. We evaluated our proposed method on several real-world traffic datasets. Experimental results show that our method outperformed state-of-the-art benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得10
1秒前
ZHY完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
毛毛弟发布了新的文献求助10
2秒前
2秒前
若水完成签到 ,获得积分10
3秒前
14999发布了新的文献求助10
3秒前
Tina完成签到,获得积分10
3秒前
SMULJL完成签到 ,获得积分10
4秒前
4秒前
大气石头完成签到,获得积分10
4秒前
5秒前
狂野忆文发布了新的文献求助10
5秒前
lingo完成签到 ,获得积分10
6秒前
6秒前
yellow完成签到 ,获得积分10
6秒前
7秒前
tomato的痛苦你不知道完成签到,获得积分10
7秒前
狂野忆文发布了新的文献求助10
7秒前
狂野忆文发布了新的文献求助10
7秒前
狂野忆文发布了新的文献求助10
7秒前
狂野忆文发布了新的文献求助10
7秒前
狂野忆文发布了新的文献求助10
7秒前
狂野忆文发布了新的文献求助10
7秒前
狂野忆文发布了新的文献求助10
7秒前
you完成签到,获得积分10
8秒前
陳.发布了新的文献求助10
8秒前
Lc完成签到,获得积分10
8秒前
堀江真夏完成签到 ,获得积分10
9秒前
浅池星完成签到 ,获得积分10
9秒前
铝离子完成签到,获得积分10
9秒前
李明涵完成签到 ,获得积分10
9秒前
MchemG应助机智的一笑采纳,获得10
10秒前
月亮上的猫完成签到,获得积分10
10秒前
如初完成签到,获得积分10
10秒前
10秒前
勤恳曼卉发布了新的文献求助10
11秒前
北风完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015762
求助须知:如何正确求助?哪些是违规求助? 3555701
关于积分的说明 11318515
捐赠科研通 3288899
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027